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1. INTRODUCTION 

 
Agriculture, as the backbone of food systems, is under constant pressure to innovate and adapt to 

meet the rising demand marked by the increasing global population and numerous environmental 

challenges. Adequate crop management plays a crucial role in safeguarding the food security of 

the earth's 8 billion inhabitants. Sprouts, which are young living vegetables, are nutritionally-dense 

and of high economic importance due to their ubiquitousness, versatility, and ease in terms of crop 

management (Reed et al., 2018; Waliat et al., 2023; Yang et al., 2013). 

As the early stages of a plant's life, sprouting represents a critical point that significantly influences 

subsequent growth and yield potential due to the impact of abiotic stress factors (Dolferus, 2014). 

Temperature and humidity are major sources of environmental stress factors that influence the 

yield of economically important crops (Amin et al., 2021; Saibo et al., 2009). As crucial 

determinants of growth, modern-day invention employs the use of environmentally-controlled 

chambers to control these environmental variables and provide the optimal growth conditions for 

crops of commercial importance.  

Many analytical techniques exist for monitoring the state of plants, such as gas chromatography, 

liquid chromatography, spectrophotometry, and sensor-based techniques. However, these methods 

are largely expensive, labour-intensive, time-consuming, invasive, reagent-reliant, and without 

real-time capabilities (Bester, 2008; Rahimi et al., 2020). 

Near-infrared spectroscopy (NIRS) is a widely recognized fast and non-destructive correlative 

analytical technique for crops and food analysis (Abbas et al., 2018). It is a cutting-edge tool for 

monitoring and optimizing plant growth. Unlike other traditional methods, the NIRS has real-time 

capabilities that offer a unique window into the physiological processes of plants (Pang et al., 

2023). Its multivariate data analytical process involves algorithms for the interpretation of spectral 

information, which provides rapid assessment of plant states and compositions (de Carvalho Lopes 

& Steidle Neto, 2018; Zahir et al., 2024), enabling scientists and farmers alike to make data-driven 

decisions for enhanced agricultural productivity, resource efficiency, and ultimately, global food 

security. 

Hence, non-commercial climate chambers were employed to simulate diverse atmospheric 

conditions in which sunflower and pea plants (economically important sprouting plants) were 

cultivated. The growth dynamics and responses of the plants to some specified temperature and 
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humidity environmental variables were systematically observed and documented using NIRS. The 

need to monitor the growing conditions of these sprouting plants is substantiated in the face of the 

current escalating demands for global sustenance and the imperativeness of optimizing these 

conditions to ensure a robust and secure food supply for the expanding global populace. 

This study focuses on the applications of NIRS in monitoring the growing process of sunflower 

sprouts under temperature and humidity factors.   

2.  AIMS AND OBJECTIVE 

2.1 General Objective  

● The general objective of the study is to evaluate the suitability of NIRS to monitor 

the growing process of commercially valuable sprouting plants under different 

temperature and humidity levels.  

2.2 Specific Objective 

 The specific objective of the study includes:  

● To determine the effect of different stress conditions such as optimal temperature 

and humidity on the growth of sunflower sprouts. 

● To determine the applicability of NIRS in combination with chemometric tools for 

monitoring sunflower sprout growth under different conditions. 

● To test the suitability of NIRS for the discrimination sprout samples under different 

stress conditions.  

● To assess the capacity of NIRS for predicting brix, dry matter, height, and other 

parameters using Partial Least Squares Regression models. 
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3. LITERATURE REVIEW 

3.1 Importance of Sprouts in the Food and Health Industry 

Sprouts are young living vegetables germinated from the seeds of different plants such as 

vegetables, spices, grasses, and some legumes (Sirimuangmoon, 2018). The sprouting process 

involves germinating seeds, grains, or legumes in water, typically until tiny shoots emerge. During 

this process of transformation from seeds to sprouts, complex biochemical changes occur, 

enhancing the bioavailability of nutrients in sprouts and impacting health benefits for consumers 

when consumed (Hübner & Arendt, 2013; Sirimuangmoon, 2018).  

 

Figure 1. Sprouts (Internet 1) 

 
Due to their health-impacting attributes, sprouts have become a common dietary food source, 

serving as healthy choices, especially among health-conscious consumers, elderly individuals, and 

other vulnerable classes. In many parts of the world, various varieties of sprouts are consumed, 

such as alfalfa sprouts, broccoli sprouts, clover sprouts, radish sprouts, mung bean sprouts, lentil 

sprouts, soybean sprouts, sunflower sprouts, fenugreek sprouts, chia sprouts, quinoa sprouts, kale 

sprouts, etc. Each specific sprout variety is unique in its own composition of complex vitamins 

and minerals, phytochemicals, antioxidants, and unique health-enhancing constituents. For 

instance, some sprouts have functional properties that boost the immune system and metabolism 
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of the body (Paśko et al., 2009). Others, like wheatgrass, have a high content of chlorophyll and 

are therefore, particularly effective for body cell detoxification, oxygenation, antioxidation, and 

anti-inflammation (Akbas et al., 2017; Viacava & Roura, 2015). Additionally, microgreen sprouts 

like broccoli and radish sprouts are rich in dietary fiber which improves the digestive system and 

aids in weight management (Zieliński et al., 2007). 

Sprouts are classified based on their sources. These sources include vegetables, fruit, cereals, and 

spices. These classifications reflect the variety of plant species that undergo the sprouting process 

and the unique nutritional profiles and flavors that different sprouts have, as shown in Table 1. 

Classification of sprouts on the basis of the sources and their phytochemical constituents (Waliat 

et al., 2023)Error! Reference source not found..  

 

Table 1. Classification of sprouts on the basis of the sources and their phytochemical constituents 
(Waliat et al., 2023) 
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In today’s food industry, sprouts are of great interest due to their easy and rapid cultivation and 

established health benefits through their high content of secondary metabolites (Reed et al., 2018).  

The rapid growth cycle of sprouts enables efficient and continuous cultivation suitable for both 

small-scale and large-scale production. Their cultivation places emphasis on eco-friendly and 

resource-efficient food production practices, thus bearing economic significance.  

Nutritionally, sprouts constitute an excellent source of phytochemicals encompassing micro and 

macronutrients, and secondary metabolites, in levels higher than their mature counterparts, with 

prominent biological activities that help to promote health (Waliat et al., 2023; Yang et al., 2013). 

These compounds have antioxidant ability, neutralizing toxic free radicals in the body and 

protecting the body cells from antioxidative stress. Beyond this, phenolic compounds found within 

sprouts may contribute to various health benefits and reduce the risk of some chronic diseases by 

acting as anticarcinogenic, anti-ulcer, anti-inflammatory, anti-atherogenic, ant-thrombotic, anti-

allergenic, anti-microbial, immunomodulating, cardioprotective and analgesic agents. Sprouts are 

also high in vitamins (vitamin B, vitamin C, and K), and minerals (phosphorus, iron, magnesium, 

and potassium), along with amino acids which play crucial roles in the body (Finley, 2005; Judd, 

2007). These nutrients enhance digestive health, bone health, immune system support, and energy 

metabolism. 

As a fresh product, sprouts have gained interest in the food industry not only because of their high 

secondary metabolites content and short production time, but also because of their popularity for 

specialized nutrition and gourmet cooking (Abellán et al., 2019; Sangsukiam & Duangmal, 2017). 

Recognized globally as nutritional powerhouses, sprouts have versatile applications due to the 

health-consciousness of modern-day consumers who are more attentive and involved in the 

selection and consumption of healthy foods. Modern consumers typically employ them as natural 

and accessible culinary ingredients to enhance the nutritional profile of various dishes, featuring 

in dishes such as salads, sandwiches, wraps, stir-fries, and more. Additionally, the use of sprouts 

as culinary ingredients in the food industry is reported to be the safest way to ingest sprouts because 

they undergo food processing and hence, reduce the incidence of foodborne diseases (Miyahira et 

al., 2021). For instance, several studies, as highlighted in Appendix 1 have demonstrated the 

potential of sprouts for food product improvement, fortification, and formulation in the food 

industry.  
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Likewise, sprouts have gained global recognition for their immense health-promoting bioactive 

compound which are applied in the food industry. Their various phenolic and nonphenolic 

compounds have demonstrated antioxidant properties, as well as other health-benefiting 

properties. Many studies, as shown in Appendix 2 have reported the health-enhancing attributes 

of sprouts, including their anti-diabetic potential, anti-carcinogenic, cardioprotective, cholesterol-

reducing, and immunomodulating activities (Miyahira et al., 2021). Sprouts have also been 

identified to enhance glucose regulation and increase insulin immunoreactive levels (Yao et al., 

2008), including anti-hyperglycaemic activity and hypolipidemic activity (Mendoza-Sánchez et 

al., 2019). Research by (Ho et al., 2006) and Yanaka et al. (2009) has also demonstrated the 

antibacterial activity of sprouts like broccoli and pea sprouts against Helicobacter pylori, which is 

linked to gastric cancer. 

Today, several health institutes have approved sprout consumption as a health-promoting diet to 

aid in the prevention of chronic diseases and illnesses (Sangronis & Machado, 2007). 

3.1.1 Sunflower Sprouts and Health Benefits 
Sunflower (Helianthus annuus L.) is an oilseed crop that originated from North America (Adeleke 

& Babalola, 2020). It is reportedly one of the most extensively cultivated oil-producing plants 

(Yegorov et al., 2019). It ranks in the world’s top three leading oilseed crops along with rapeseed 

and soybean, and is distinguished from the other two oilseed crops as a major source of premium 

edible oil with significant importance for culinary purposes (Pal et al., 2015). Sunflower 

cultivation and growth require viable seeds, moderate rainfall, and fertile soil (Adeleke & 

Babalola, 2020).  

 

As sunflower germinates, its original composition transforms to increase the bioavailability of 

bioactive compounds and minerals (Márton et al., 2010). A study by (Tiyayon & Duangmal, 2018) 

found that antioxidant activities, phenolic compounds, and other nutrients like crude fibre, crude 

protein, and minerals were significantly improved by germination in sunflower sprouts. Being a 

natural source of antioxidants and bioactive compounds once germinated, sunflower sprouts are 

renowned for its immense health benefits. Several studies have reported the antimicrobial, anti-

inflammatory, antioxidant, antihypertensive, anti-cardiovascular, and wound-healing benefits 

derived from the inherent compounds such as flavonoids, phenolics, vitamins, and polyunsaturated 
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fatty acids in sprouts (Fowler, 2006; Guo et al., 2017a), as discussed in Table 2. Biological 

activities and compounds of sunflower sprouts (Guo et al., 2017a). Additionally, a study by  

(Bashir, 2015) highlighted their application in ethnomedicine for the treatment of disease 

conditions like pulmonary, laryngeal infections and bronchial infections, heart disease, and 

whooping cough (Bashir, 2015). Another study by (Guo et al., 2017a) reported on the culinary 

benefits of sprouts, including the use of sunflower seed as a snack, salad garnish, and in some 

bakery products (Guo et al., 2017a). These remarkable culinary and nutritional benefits has 

resulted in the growing popularity of sunflower constituents and spouts worldwide. However, the 

nutritional content found in these plants depend on the plant growing conditions.  

 
 

Table 2. Biological activities and compounds of sunflower sprouts (Guo et al., 2017a) 

 

3.2 Plant Growth Conditions and Environmental Stress Factors Affecting the 
Nutritional Quality of Sprouts 

Plants’ growth and development are influenced by environmental factors such as sunlight, 

temperature, relative humidity, air, soil, water, among others (Kwack et al., 2015). These factors 

do not only affect plant germination, growth, and development but also the phytochemical 

composition (Li & Kubota, 2009; Pérez-Balibrea et al., 2008).  

3.2.1 Temperature as an Environmental Stress Factor 
Temperature is at the core of how climate influences the development, growth, and yield of 

sprouting plants. The growth and development rate of plants is intricately regulated by air or soil 
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temperature, and different plant species may exhibit specific temperature requirements (Wheeler 

et al., 2000). Heat affects plants in various ways including influencing germination and stomatal 

development and opening. Severe low temperatures can hinder germination, while excessively 

high temperatures may induce heat stress, affecting overall plant development. Similarly, high 

ambient temperature impedes stomatal production and poses the risk of thermal injury and 

dehydration to plants (Driesen et al., 2020).  

Conversely, the effects of temperature variations on plants are crucial for their growth and 

development. Seeds respond to temperature variations uniquely, as the fluctuations towards 

extreme temperatures affect the survival of plants. Under extreme conditions, plants undergo 

thermal or temperature stress, which limits their performance compared to optimal conditions of 

temperature (Wheeler et al., 2000).  

Furthermore, nutrient composition and absorption of sprouts as well as other phytochemical 

accumulations are influenced by temperature (Šamec et al., 2022). Several studies found that 

sprouts germinated at low temperatures have improved phytochemical properties including the 

quantity and activity of the antioxidant compounds as compared to sprouts germinated at high 

temperatures (Calderon Flores et al., 2021; Khayatnezhad, 2011; Kim et al., 2022). A study by 

(Kim et al., 2022) reported that low temperatures below 40C for about 4 days as effective for 

maintaining sprout growth while improving its antioxidant content and activity(Kim et al., 2022). 

Different plant phases may necessitate a distinct temperature range. Therefore, maintaining 

optimal temperatures during plant cultivation is necessary to accelerate metabolic processes within 

the seed, and facilitate the conversion of stored nutrients into energy.  

3.2.2 Humidity as an Environmental Stress Factor 

Humidity is an important factor influencing plant growth and development. Relative humidity 

(RH) refers to the proportion of the water vapour pressure in the air to its pressure at saturation. 

RH relates to ambient temperature since, at saturation, vapour pressure increases with a rise in air 

temperature (Driesen et al., 2020). Consequently, high ambient RH during plant growth affects the 

stomatal closing ability and alters the stomatal size and density (Fanourakis et al., 2013). 

On the other hand, plant stomata close at lower relative humidity, hence enabling plants to control 

fluid loss under high evaporative demand (Merilo et al., 2018) and preventing plant death (Yuan 

et al., 2019). Beyond these, relative humidity also has implications for sprouts’ nutritional 
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composition. A study by (Amitrano et al., 2020) demonstrated that sprouts germinating under low 

humidity had higher antioxidant contents, in addition to higher polyphenols and anthocyanins, 

although they had lower soluble sugar compared to those germinated at higher humidity.    

Therefore, knowledge of the vital processes driving plants’ responses to relative humidity is 

critical for the prediction of impacts on plant growth on regional and global scales.  

3.2.3 Lighting Conditions as an Environmental Stress Factor 

Light is an essential environmental factor whose regulation is crucial for crop production (Driesen 

et al., 2020). Plants have photoreception systems that respond to light intensity and quality based 

on the light duration and intermittence, and hence determine plant morphogenetic changes and 

metabolic processes (Samuoliene et al., 2011). In addition to the proper regulation of their 

development, plants also require light for photosynthesis, which coordinates stomatal behaviour, 

that is the opening and closing of the stomata (Bögre & Beemster, 2008). Generally, studies have 

determined that an increase in light intensity leads to a linear increase in the stomatal (Casson & 

Gray, 2008; Lake et al., 2001). Moreover, lighting conditions may evoke photooxidative changes 

in plants, which can alter the plant’s antioxidant defense system (Samuoliene et al., 2011). For 

instance, low-light intensity grown plants are predisposed to phototoxicity than plants grown under 

high-light intensity hindering the light’s capacity for conversion of light energy into chemical 

energy (Long et al., 1994), whereas high-light intensity grown plants have lower photosynthetic 

efficiency (Al-Khatib & Paulsen, 1989; Bowes et al., 1971).  

The duration and intensity of light influences leaf area and height (Fan et al., 2013). Low light 

intensity typically leads to expanded specific leaf area and high plant height to maximize light 

absorption, hence meeting the photosynthetic demand (Steinger et al., 2003). Whereas, high light 

levels lead to reduced specific leaf area to shield the plant from excessive irradiance. These 

measures prevent photodamage caused by excessive light damage, ensuring continuous 

photosynthesis (Givnish et al., 2004; Matos et al., 2009). 

Additionally, light intensity and quality also impact on the nutrient profile of sprouts during 

germination. Several studies have demonstrated that plants germinated under light conditions have 

the highest phenolic compounds, anthocyanins, and antioxidant activity, especially when 

combined with low relative humidity germination conditions (Amitrano et al., 2020; Brazaityte et 

al., 2015; Kyriacou et al., 2016; Qian et al., 2016). For instance, a study by (Tsurunaga et al., 2013) 
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found that sprouts germinated under Ultraviolet blue light range of >300nm effectively produced 

buckwheat sprout of higher anthocyanins content, although another study by (Urbonavičiūtė et al., 

2009) found that wheat and barley sprouts germinated under amber light at 595nm had no 

significant increment in the phenolic and ascorbic acid content. 

 

The duration and intensity of light exposure impact the rate of photosynthesis, growth rate, and 

nutrient composition. Therefore, striking the right balance in light conditions is crucial for 

cultivating high-yield and nutrient-dense sprouts.  

 

3.2.4 Other Influencing Factors 

Various other abiotic and biotic elicitors, including plant genes and hormones, can significantly 

influence plant growth and nutritional quality. Some of these factors include plant genotype and 

seed source, and germination conditions like salinity stress, hypoxia stress, and preharvest 

treatments. A study by (Benincasa et al., 2019) pinpointed the genotype and seed source as the 

singular most important factor influencing the nutritional content and value of sprouted grains, as 

this factor characterizes the genetic material of the seed.  

Salinity, as a germination condition, has been proven of significant importance due to its ability to 

cause abiotic stress in plants, particularly during the early phase of seedlings growth, which is a 

salt-sensitive stage (Benincasa et al., 2019). However, a study by (Lim et al., 2012) noted that the 

carotenoid and phenolic compounds in buckwheat sprouts increased when treated with salt 

solution regardless of the growth stage. 

Additionally, hypoxia stress alters the gas composition of plants during the germination phase, 

hence the nutritional content (Benincasa et al., 2019). This stress is associated with acidic culture 

solutions as germination substrates, which typically leads to oxygen deficiency. In this case, plant 

tissues stimulate amino acid called as an adaptational mechanism to the stress-indced cytosolic 

acidosis, caused by the oxygen deficiency (Aurisano et al., 1995).  

In general, these factors may have substantial impact on plant growth and development, 

particularly during sensitive phases such as the early seedling growth phase (Benincasa et al., 

2019).  
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3.3 Modern Agricultural Challenges 

Nowadays, modern agriculture is facing a complex web of challenges that demand innovative and 

sustainable solutions (Lykogianni et al., 2021). The alarmingly high population growth, 

urbanization, and changing dietary patterns have placed unusual strain on the global food system 

(United Nations Environment Programme, 2012). In addition, the current climate change issues 

being faced globally present a profound challenge, introducing uncertainties with extreme and 

unpredictable weather patterns, and shifts in growing seasons, consequently, impacting crop yields 

and challenging traditional agricultural practices. 

Modern agriculture also faces the challenge of depleting natural resources, such as water and arable 

land, and these pose a threat to long-term food security (Khatri et al., 2023). Moreover, the use of 

agrochemicals in modern agricultural practices has raised environmental concerns, with negative 

implications for water quality, soil health, and biodiversity (Lykogianni et al., 2021).  

Beyond these challenges, modern agriculture is influenced by external factors such as the 

globalization of trade. The globalization of trade introduces interconnected risks, hence making 

agriculture susceptible to economic and geopolitical shifts. Furthermore, the access to technology, 

education, and markets has remained uneven in some parts of the world, thus creating disparities 

in agricultural productivity and income among regions and communities (Thirtle & Wiggins, 

2001).  

With the global population estimated to exceed 9.7 billion by 2050 and 10.9 billion by 2100, it has 

become imperative to navigate these challenges and create a resilient and equitable agricultural 

landscape for the future (United Nations Environment Programme, 2012). 

3.4 Controlled Environment Agriculture 

In the face of these modern agricultural challenges, the cultivation of plants, especially sprouting, 

which are fundamental elements of the human diet, undoubtedly necessitates sustainable practices 

that increase crop yield to provide the food that is needed by a growing population. Controlled 

Environment Agriculture (CEA), shown in Figure 2, has been identified as an approach for 

adapting to the evolving agricultural landscape and the challenges it presents (Engler & Krarti, 

2021).  
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Figure 2. Modern greenhouses and controlled environment agriculture (Shamshiri et al., 
2018) 

 

CEA represents a transformative approach to modern farming, where environmental factors like 

temperature, humidity, light, and nutrient levels are controlled within enclosed structures such as 

greenhouses, vertical farms, or indoor hydroponic systems. Through the optimization attributes of 

CEA, it provides an ideal environment for plant growth and development, resulting in rapid plant 

growth cycles, increased yields, and resource efficiency. The precision which CEA imparts 

extends beyond climate control, to mitigating environmental impact through hydroponic and 

aquaponic systems that enables water conservation and nutrient recycling. Furthermore, CEA 

allows the provision of municipal food production in urban areas, and enhances pest and drought 

control, biosecurity, perennial crop farming, while minimizing the logistics cost associated with 

conventional farming (Benke & Tomkins, 2017). CEA also has the potential to maximize land 

usage in terms of farming, while also providing employment opportunities in urban cities to 

counter the effects of urbanization and hence, increased national and global economy (Benke & 

Tomkins, 2017). 

3.4.1 Climate Chamber 
The rapid expansion and urbanization of modern cities poses threat to sustainable agriculture and 

food security, through the resource shortage and environmental pollution which it causes 

(Despommier, 2011; Xie et al., 2017). Despite the tremendous damage that agroecology is 
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suffering, the nutritional requirements and quality of agricultural products is increasing, which 

creates a conflicting situation within the agroecology system (Orsini et al., 2013). Therefore, 

agricultural systems that regulate growth conditions to achieve faster and more efficient production 

are increasingly sought after. The high interest in such advanced agriculture systems is driven by 

the need to meet the increasing demands for agricultural produce and the conditions for food 

security (Eigenbrod & Gruda, 2015). These systems do not only provide opportunities to enhance 

food supply, but also aid in improving environmental sustainability, social integration, the health 

of citizens, and the local economy altogether (Orsini et al., 2013).  

 

One such system is the climate chamber. This refers to a controlled environment system that is 

designed for the precise manipulation of temperature, humidity, light, and other environmental 

conditions to simulate specific climatic conditions. By such manipulations of the environmental 

conditions, it optimize plant growth conditions and minimizes the impact of abiotic stress on crop 

yield. In sprout production, climate-controlled chambers provide a means to fine-tune temperature 

conditions, ensuring an environment conducive to optimal sprout growth. 

3.5 Essential Parameters for Sprouts Quality  

Evaluating the quality of sprouts encompasses a multifaceted assessment of parameters crucial for 

both nutritional content and sensory appeal. Nutrient content is a pivotal aspect, involving the 

measurement of essential elements such as vitamins, minerals, proteins, fats, and antioxidants 

(Wang et al., 2022). Additionally, monitoring moisture content is critical, as it profoundly 

influences both the shelf life and texture of sprouts (Shomodder et al., 2022). Other parameters 

such as the pH and conductivity are also important indexes to measure, particularly during the 

sprouting process, due to the antinutritional factors found in grains and cereals which may increase 

or decrease after sprouting (Purohit et al., 2023). 

3.5.1 Moisture Content Determination 
The moisture content is a critical parameter in sprout analysis. The volume of water used in 

hydrolytic reactions may signify the growth phase and can be an indicator of the metabolized 

constituents (Nugraha et al., 2021). Moisture content represents the proportion of water present in 

the sprout, which influences the sprout's texture, weight, and shelf-life. Inversely, the moisture 
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content also relates to the dry matter content, which represents the remaining solid components 

after removing water. Analysis of the moisture content and dry matter content helps in determining 

the overall composition and stability of sprouts during storage and processing.  

The most commonly used method for water content determination is based on the Association of 

Official Analytical Chemists (AOAC) method (AOAC, 1995). In this method, the sampling wares 

(empty dish/crucibles and spatula) are oven-dried at 1050C for 3 hours, and the equilibrium weight 

of the wares is recorded. An analytical scale is used in weighing the sprouted sample (3-5g) into 

the measured container, which undergoes the oven-drying process for another 3 hours. The 

moisture content is calculated from the mass lost during the oven-drying process (AOAC, 1995). 

3.5.2 Ph and Conductivity Determination  

Grains and legumes contain toxic and undesirable constituents compared to other plant families. 

These toxic compounds include phytates, flavonoids, alkaloids, tannins, and trypsin inhibitors that 

limit their utilization as a protein source (Masood et al., 2014). The pH and conductivity of 

sprouted plants are determined due to the anti-nutritional factors contained in most grains and 

legumes, which are affected after the sprouting process.  Several studies have highlighted the 

reduction of anti-nutritional factors, particularly phytic acid, in plants during the sprouting process 

(Kamal Mohamed et al., 2011; Xue et al., 2016). The reduction of antinutritional components leads 

to the release of free hydrogen ions, which results in lower pH measurement, and supposedly 

higher conductivity reading (Nugraha et al., 2021). 

 
Figure 3. pH and electrical conductivity meter (Internet 2) 
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The common method for the determination of pH and electrical conductivity in sprout extract 

samples involves using a pH and electrical conductivity meter instrument (Figure 3). The 

electrodes of the meter are dipped into the sprout extract sample contained in a glass beaker and 

the readings are taken (Nugraha et al., 2021).  

3.6 Role and Applications of Near-infrared Spectroscopy in the Food and 
Agricultural Sector 

In recent times, growing public concern over the safety of food has necessitated the development 

of rapid, robust, and accurate methods and techniques for food safety evaluation and control (Qu 

et al., 2015). One such advancement is near-infrared spectroscopy (NIRS), a non-destructive and 

convenient tool, which has proven to be a promising technique for food safety inspection and 

control due to its significant advantages of speed, non-invasive measurement, ease of use, and 

minimal sample preparation requirement (Qu et al., 2015).  

NIRS operates within the wavenumber range between 14,000 cm–1 to 4000 cm–1 and a wavelength 

range of 400 - 2,500 nm. It typically constitutes a radiation source, wavelength selector/modulator, 

sample cell, detector, and signal processor (Agelet et al., 2011). It possesses the following 

measurement modes: reflectance (specular and diffuse), transmission, interactance, and 

transflectance. Different NIR signals originate from vibrations caused between bonds of light 

atoms, such as C, N, O, S, and H single bonds(Lohumi et al., 2015). 

For sprouted plants, some studies recognize NIRS as a highly sensitive technique that adequately 

satisfies the need for quick and effective plant sprout quality checks, especially in large-scale 

production, where a definite standard, as in the case of mung bean sprouting, has not been 

established (Caporaso et al., 2018; Nugraha et al., 2021; Wang et al., 2022). Additionally, several 

studies have extensively employed NIRS for evaluating the internal quality of beans to effectively 

separate hard seeds from regular seeds (Delwiche et al., 2006; Hacisalihoglu et al., 2010; Haughey 

et al., 2013; Kaliramesh et al., 2013). Such evaluation is of importance in the seed production 

process because the hard ones do not germinate during sprouting and thus, easily develop mold 

and contaminate neighboring seeds.  A study by (Phuangsombut et al., 2017) developed a 

classifying model using Near-infrared hyperspectral imaging in combination with partial least 

squares discriminant analysis and demonstrated the application of Near-infrared spectroscopy in 

separating hard mung beans from normal ones.  
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Beyond this, NIRS has also been utilized for the assessment of the internal quality of seeds, for 

instance in the evaluation of their nutritional composition (Dong & Qu, 2012). Its non-destructive 

feature reportedly offers an advantage in terms of preserving seeds’ vitality during the 

determination of seed quality (Phuangsombut et al., 2017). 

 

In analyzing with NIRS, a spectral data pre-treatment step is taken. The pre-treatment involves 

specific processing procedures performed on raw data to enhance the quality and reliability of 

analytical results. In addition to improving the accuracy and robustness of quantitative analyses, 

data pre-processing also helps to improve the interpretability of raw data by transforming the data 

into a form that is easily understood by users. It also helps in the detection and removal of outliers 

and trends through the exclusion procedure and also serves as a dimensionality reduction method 

by the removal of irrelevant and redundant information through feature selection (Lasch, 2012). 

Common spectral pre-treatments include baseline correction, normalization, smoothing, and 

derivative transformations. Baseline correction aims at detecting and eliminating spectral outliers 

or systematic variations in the baseline of a spectrum, while normalization scales the spectra within 

a similar range, aiding in the comparison of different spectra and consequently improving the 

accuracy and efficiency of the models (Heraud et al., 2006; Kohler et al., 2006; Liu et al., 2003). 

Smoothing techniques reduce noise by the removal of unwanted frequencies from the signals to 

be analyzed, thus enhancing the resolution of spectral features. Derivative transformations 

minimize background interferences, reduce the baseline drift, and resolve overlapping spectra, 

consequently amplifying high-frequency signals and providing insights into variations within the 

spectra (Martens & Næs, 1989).  

 

Beyond the pre-treatment step, the NIRS leverages on multivariate analytical techniques, such as 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Partial Least 

Squares Regression (PLSR), as classification and screening tools used for extracting meaningful 

information from complex datasets (Abdi & Williams, 2010). The primary goal of PCA is 

dimensionality reduction through the transformation of original variables into a set of uncorrelated 

principal components, which simplifies data interpretation while retaining essential information 

(Wold et al., 1987). PCA is a very useful technique to spot hidden patterns in the data and is 
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therefore mostly used as an initial step of the analysis before classification (Moghaddam et al., 

2022) 

On the other hand, LDA is a classification technique that aims to maximize separation between 

predefined groups in a dataset, thus making it beneficial for discrimination and pattern recognition 

tasks. Due to its high classification attribute, it is typically employed in the detection of food 

adulteration (Esteki et al., 2018). 

Conversely, the PLSR is a pattern recognition tool that identifies an adequate number of latent 

components with the aim of discriminating between previously established groups (Brereton & 

Lloyd, 2014). Due to its ability to recognize patterns, it is able to establish relationships between 

predictor variables and response variables where there is high collinearity among predictors 

(González-Domínguez et al., 2022).  

3.7 Rationale of the Study 

The rationale of this study is based on the importance of understanding the dynamics of sunflower 

sprouts under different environmental conditions. Despite the widely recognized nutritional value 

and health benefits of sunflower sprouts, limited research has been conducted on the specific 

environmental factors that influence their sprouting behaviour, and hence, their nutritional value. 

This study aims to evaluate the use of NIRS for monitoring the growth of sprouting plants under 

different environmental variables. There is limited literature in developing appropriate models to 

characterize sprouts grown under different environmental conditions and to predict different 

quality parameters, therefore, the study sought to address the suitability of NIRS to assess the 

impact of temperature and humidity on sunflower sprout dynamics and nutritional composition.   
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4. MATERIALS AND METHODS 

4.1 Plant Materials and Growth Conditions  

4.1.1 Sunflower Seeds Procurement 

The Sunflower seeds (Figure 4) used in the research experiment were procured from a reputable 

organic seed manufacturer and distributor in Budapest, Hungary called Rédei Kertimag Zrt. 

The seeds are of the same variety and uniform in size, quality, and genetic makeup, hence 

minimizing genetic variations and suitable for growth in a controlled environment.  

 
Figure 4. Image of sunflower seeds used for the study (Internet 3) 

4.1.2 Growth Substrate and Planting Conditions 

A growth substrate mix (Figure 5) was procured from Agro CS Hungary Kft.  

 

Figure 5. Image of growth substrate used for the study (Internet 4) 

https://www.kertimag.com/main.php?mp=avny
https://www.kertimag.com/main.php?mp=avny
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Based on the information provided on the labeling, this mix was composed of a balanced 

combination of organic matter and essential nutrients like Nitrogen, Phosphorus Oxide, and 

Potassium Oxide. It is composed of peat, sand, modified reaction agent, fine structure, low nutrient 

content for even planting of seeds and intended for seed germination and grafting of young plants. 

The constituents of the substrate represent an ideal medium for optimal sunflower sprout 

development.  

4.1.3 Set up of the Climate Chambers 

A noncommercial climate chamber (Figure 6) was used as the growth environment for the 

sunflower seeds. The chambers were equipped with in-built temperature and humidity control 

mechanisms, to provide the optimal growth conditions as required for the experiment. The 

specifications of the chambers included a 32 x 42cm dimension, a control system powered by STC 

for the temperature, and Arduino Mega for the humidity. To decrease the temperature, commercial 

fridges were used, whereas heating plaques (12V) were used to increase the temperature. An 

ultrasound mist generator was used to increase the humidity to the desired value, while a silica-

filled column and fans of 5V were used to decrease the humidity. The temperature and humidity 

sensors used in the climate chamber was the DHT11-M0 type shown below. 

 
Figure 6. Image of pre-test chamber with the elements of humidity control. 
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For the experiment, 9 chambers (Figure 7) were used to control three different temperatures and 

humidity. 

 
Figure 7. Image of the 9 chambers used for the study. 

The chambers allowed for the regulation of temperature and humidity, the two stress factors of 

vital interest in this research.  

4.2 Experimental Design 

The experiment was designed in three phases: The cultivation, the sample preparation and 

measurements, and the data analysis.  

 

The experiment started with the preparation of the seeds and soil. The process involved an initial 

pre-germination step (Figure 8) of soaking seeds (15g by treatment) for 12 hours. After the pre-

germination period, the seeds were washed and rinsed, then covered with dampened paper towel 

for 24 hours.  

After this, the pregerminated seeds were planted into an internal rectangular container containing 

the growth substrate (Figure 9). The sunflower seeds were placed in the prepared rectangular 

internal container over 2cm of soil and dampened with water. Another 2cm of soil was added to 

cover the seeds. The seeds were strategically placed to ensure proper spacing and depth for optimal 

germination. The internal container had holes in the base to prevent water logging. In an external 
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container, 6ml of water was added which ultimately served as the water source for the seeds to 

germinate. Next, the prepared containers were placed in the non-commercial growth chambers. 

The chambers were transferred to the fridge (Figure 10).  

 
Figure 8. Image of the pregerminated sunflower seeds. 

 
Figure 9. Image of the plates prepared with the growth substrate. 

 
Figure 10. Image of the non-commercial growth chambers in the fridge. 
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The planting materials and growth conditions were strictly followed, from planting until 12 days 

of growing, because the present study aimed to minimize variability and external influences, in 

order to allow for a more accurate assessment of the impact of stress factors on the growth of 

sunflower sprouts.  

 
Figure 11. Image of the sunflower sprouts in the fridge 

Overall, the present study monitored and evaluated the effect of two stress factors: temperature 

and humidity on the growth conditions of sunflower sprouts. For this study, a randomized complete 

block design was used in order to minimize bias and enhance the viability of results. Therefore, 

the sunflower seed containers were randomly assigned to different treatment groups, and each 

treatment was represented across multiple blocks. Different treatment groups were exposed to 

varying temperature and humidity stress levels. The study duration was 12 days. From the planting 

until the final harvesting, with 5 days of measurement (namely days 4, 6, 8, 10, and 12 where the 

plants were harvested), carefully chosen to capture the entire lifecycle of sunflower sprouts from 

germination until the early phase of development, and to allow sufficient time for the expression 

of stress-induced changes in growth.  

Throughout the entire study period, the environmental parameters within the noncommercial 

chambers were carefully and continuously monitored. 

The three temperature conditions were implemented 15ºC, 19ºC, and 23ºC while the three humidity 

conditions were 70%, 80%, and 90%.  In total, nine growth chambers (grouped in 3 sets) were 

used for the different environmental conditions. 

The temperature within the 9 noncommercial chambers was set and maintained at different 

environmental conditions (highlighted in Table 3), each condition is regarding a single climate 

chamber. After this, the plates containing the plants were placed into the external container, these 

were put into three plates, accounting for three consecutive repeats.   
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Table 3. Different temperature and humidity combinations used for the study. 

 70%RH 80%RH 90%RH 

15°C*  15°C-70%RH 

(T15H70) 

15°C-80%RH 

(T15H80) 

15°C-90%RH 

(T15H90) 

19°C* 19°C-70%RH 

(T19H70) 

19°C-80%RH 

(T19H80) 

19°C-90%RH 

(T19H90) 

23°C** 23°C-70%RH 

(T23H70) 

23°C-80%RH 

(T23H80) 

23°C-90%RH 

(T23H90) 

* Harvesting of plants for evaluation at 6, 8, 10, 12 days after sowing. 
** Harvesting of plants for evaluation at 4, 6, 8, 10, 12 days after sowing. 

Temperature 

Humidity 
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Figure 12. Flowchart of experimental arrangement for the study. 
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4.3 Sample Preparation and Experiment 

The measurement period for the analysis lasted for a week from May 26 to June 2, 2023. For each 

measurement, samples were randomly taken from the chambers in the fridges. The selected 

samples (15 plants for each treatment) were cut, washed, rinsed, and left to dry on paper towels at 

room temperature for 30 minutes. All the parts were then arranged together in the NIR curvette 

and measured with the XDS.  

For the height, 15 plants by treatment were measured using a ruler, and the values were recorded 

for the average value. Similarly, 15 plants were weighted using the analytical balance in two 

repeats, the values were recorded and an average value was determined from the two repeats.  

In determining the dry matter content, the samples/plants that were weighed were cut into several 

parts, including the stem and the leaves. They were transferred to a labelled foil paper and taken 

to the oven for drying at 105ºC for 3 hours.  

The pH, conductivity, and ascorbic acid were determined by transferring 2g from the 15 plants 

from Parallel 1 to a labelled Ziploc bag. The brix was first measured by crushing the plants in a 

mortar (Figure 13) and recovering the liquid part, which was recovered using distilled water in 

the ratio of 1:10 (2g in 20ml DW). The mixture was then filtered using the Whatman filter paper. 

 
Figure 13. Image of the sunflower sprouts crushed for brix measurements 
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4.4 NIRS Scanning and Acquisition of NIR Spectra 

The NIRS instrument utilized in this research was the Metrohm XDS RapidContent Analyzer 

(Figure 14). It is an analytical instrumentation tool designed for swift and accurate content analysis 

in various industries. In the food industry, it enables the rapid, nondestructive analyses of solid 

powders, coarser granules, pellets or flakes. Hence, it is an indispensable instrument for the 

spectral measurement of every possible sample type in the visible and near-infrared wavelength 

range (400 - 2,500 nm) (Metrohm, 2023). With the XDS Rapid Content Analyzer, the testing for 

material or composition identification is performed either in the laboratory or at-line, on samples 

contained in their original bags or packaging. The XDS RapidContent Analyzer is also used in the 

analysis of sprouts, to determine the composition.  

 
Figure 14. NIRS XDS RapidContent Analyzer (Internet 3) 

It has real-time features that characterize its efficiency and enables users to make informed 

decisions swiftly, once receiving the real-time data.  

 

Prior to the measurements, the instrument was calibrated to ensure and assure the reliability of data 

obtained from the measurements. The sunflower sprouts were prepared as described in section 4.3 

and the cut samples were carefully arranged in two layers and covered with the lid (0.50MM) in 

the NIRS XDS curvette (with the inner diameter of 43.20mm) to ensure uniform exposure to the 

NIRS instrument.  
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The NIRS scanning and spectra of sunflower sprouts were measured over the range of 800-

2500nm, with a resolution of 0.5nm. The duration for each NIRS scan was 30 seconds, which is 

sufficient for the acquisition of comprehensive spectral data. The data was collected using the 

diffuse reflectance mode, allowing the spectra of the materials to be collected by measuring the 

amount of light reflected by the sample. Each spectrum was the average of 32 scans recorded at 

40ºC. The spectra for each sample analyzed were recorded in three consecutive scans to account 

for the instrumental or sampling variability. Before each series of measurements, the background 

spectrum was also acquired as a precautionary measure against instrument-related variations and 

drifts, hence to generally enhance the accuracy and reliability of the spectral data obtained from 

the sample by providing a baseline reference.  

4.5 Data Analysis 

4.5.1 Processing and Pretreatment 
The analysis of the generated spectra was performed with R-project software (specs) using the 

aquap2 package (Tsenkova et al., 2018). Prior to the multivariate data analysis, the following 

pretreatments were applied in order to extract the significant information contained in the spectral 

data: Savitzky-Golay pretreatment for smoothing (with 2nd order of polynomial, p = 2; number of 

data points in the filtering window, n =35; and order of differentiation applied to the polynomial, 

m=2) and the Multivariate Scatter Correction (MSC) to correct scattering. The wavelength 

selection for the data analysis was 1100-1800nm. 

4.5.2 Multivariate Data Analysis 
Following the pretreatment and processing step, the dataset was examined for its overall 

distribution using the principal component analysis (PCA) for pattern recognition of the samples. 

The environmental factors (temperature and humidity) and treatment/repetitions were used to 

colour the PCA scores to observe the patterns of major significance to the study. Outlier detection 

and removal were made based on PCA scores to ensure that the principal components accurately 

represent the variance within the data, hence preventing skewed results due to extreme 

observations. The new independent variables (PCA scores) generated by the PCA served as input 

for the LDA classification models, also referred to as PCA-DA models. In line with a study by 
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Kovacs et al. (2011), a three-fold cross-validation technique was utilized for the PCA-DA models 

for the inclusivity of samples in every evaluation set, hence resulting in three PCA-DA models. 

For the PCA-DA models, there were databases each according to three different levels of 

temperature (15°C, 19°C, and 23°C) and humidity (70%RH, 80%RH, 90%RH). These datasets 

(that is the temperature and humidity dataset) were utilized for the PCA-DA models and the 

classification was done according to sprouting days. From the three models, an average is 

calculated to report.  In the calculation of the models, it is maximized the between-class distance 

and minimized the within-class distance. 

Partial Least Squares Regression (PLSR) was employed in constructing and validating the 

chemometric models for quantitative evaluation of the composition of the sunflower sprouts based 

on their spectral characteristics.  

An initial cross-validation, precisely the K-fold cross-validation, was performed where the sample 

set/observations inclusive of the consecutive scans were randomly but equally divided into ten 

subsets. Of these, one part of the subsets was used for cross-validation while the rest were used for 

building and training the model.  
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5. RESULTS AND DISCUSSION 

5.1 Visual Inspection of the NIR Spectra 

The NIR raw spectra of the sunflower sprout samples, coloured by temperature, in the full NIR 

range (700 - 2500nm) is shown in Figure 15. The raw spectra offer an initial broad view of the 

sample’s molecular absorptions and interactions. The plot below was coloured by temperature 

because it showed a better distinction of the spectra compared to the other coloring possibilities 

(humidity, day). In general, it can be observed from the plot that T15 has a lower absorbance 

than T19 and T23.  

 
Figure 15. The raw spectra of the sunflower sprouts acquired by the XDS in the full range 
of 700-2500nm region.  

 

Additionally, the loading spectra of the multivariate analysis within the full electromagnetic 

regions of 1100 - 1800nm were identified as the regions of high correlation, whereas the VIS/NIR 

regions (400-1099nm) and the far shortwave infrared regions (1801-2499.5nm) (Hennessy et al., 

2020) fail to do so, hence these regions were excluded from multivariate analysis. Additionally, 

this wavelength range was selected because, at 1100nm, there is a shift of the spectra for the change 

of another detector in the spectrometer, which could be mistaken for a peak, hence the need to 

select the 1100 - 1800nm range. 
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Therefore, truncation of the spectra was necessary to isolate the regions of interest for a more 

detailed analysis and extraction of meaningful information from the NIR spectra. As such, the 

acquired spectra were truncated to a specific wavelength range, and the Savitzky-Golay second 

derivative was applied to the preprocessed spectra for noise reduction and to highlight spectral 

variations that correspond to characteristics of importance or peaks of interest.  

 

The second derivatives of the spectra for the sunflower sprout samples in the range of 1100-

1800nm are shown below coloured by temperature (Figure 16) variable.   

 
Figure 16. The 2nd derivative of Savitzky-Golay (2nd order polynomial and 35 points) of 
the sunflower sprouts NIR spectra in the 1100-1800nm region colored by temperature 

From the NIR spectra of Figure 17, the spectra show broad and distinct characteristic absorbance 

bands at 1125, 1150, 1350, 1370, and 1400nm. According to the study by  (Usman et al., 2010), 

the wavelength range 1125-1150nm shows absorption associated with the first overtone of Carbon-

Hydrogen (C-H) stretching vibrations, while 1150-1250nm denotes absorptions occurring due to 

the second overtone vibration of C-H stretching (Paradkar et al., 2002). Peaks within this region 

are indicative of the presence of organic compounds containing C-H bonds such as fats, oils, 

carbohydrates etcetera. (Guo et al., 2017b) demonstrated that sunflower plants are rich sources of 

oil and polyunsaturated fatty acids, hence the absorption peaks at the above-mentioned 

wavelengths could be associated with the lipids and fats present which contribute to the nutritional 

profile of sunflower sprouts.  
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Peaks around the wavelength range of 1350-1400 are typically associated with a combination of 

C-H stretching and bending vibrations, including the first overtone of O-H stretching in water 

(Paradkar et al., 2002), confirming the naturally high-water content of sprouted plants.  

 

Additionally, the raw spectra showed a noticeable separation between the spectra, likely attributed 

to scattering, hence further statistical analysis and data treatment like the multiplicative scatter 

correction (MSC) for baseline shift correction was applied to reveal a clearer tendency, as shown 

in Figure 17.  

 
Figure 17. NIR spectra of the sunflower sprouts after Multiplicative Scatter Correction 
(MSC) pretreatment in the 1100-1800nm region, coloured by temperature. 

The MSC spectra revealed a certain degree of overlap between the three temperatures, with no 

noticeable separation, hence the need for further statistical analysis like the PCA for pattern 

recognition of the variables.  

5.2 Exploratory data evaluation of the NIR Spectroscopy results with PCA 

The following figures (Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22) show the 

results of the PCA on the entire Near-Infrared Spectroscopy (NIRS) on the smoothed (Savitzky-

Golay filter) and MSC-corrected spectra of the sunflower sprouts. 
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Figure 18. Principal component analysis (PCA) scores on the full NIRS spectral data of 
sunflower sprouts after smoothing (Savitzky-Golay filter) and MSC pretreatments, in the 
1100-1800nm range. PCA Score dots coloured by temperature:  temperature 1 – 150C 
(coloured in blue dots), temperature 2 - 190C (coloured in red dots), and temperature 230C 
(coloured in yellow dots). Total Number of Observations, N = 702. 

From Figure 18, most PCs exhibited some overlapping, however, there is an observable trend 

showing more dispersion for temperatures 15ºC and 19ºC compared to temperature 23ºC.  This can 

be explained as temperatures 1 and 2 are low levels of temperature, and thus with lesser impact in 

terms of variability when compared to temperature 3. This is in line with the study by temperature 

(Driesen et al., 2020) which demonstrated high differences in plants grown at excessively high 
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temperatures due to thermal shock.  Additionally, there is an observable pattern of separation for 

the different temperature variables that is apparent in the principal components PC3 and PC4, 

highlighted in the figure.  

 

 
Figure 19. PCA scores on the full NIRS spectral data of sunflower sprouts calculated by 
the three different humidity levels after the XDS smoothing (Savitzky-Golay filter) and 
MSC pretreatments in the range 1100-1800nm. PCA Score dots coloured by humidity 
70% (coloured in black dots), humidity 80% (coloured in red dots), and humidity 90% 
(coloured in green dots). Total Number of Observations, N = 702. 
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Similar to Figure 18,Error! Reference source not found. the PCs in Figure 19 exhibited a degree 

of overlapping and broad dispersion for the first and second levels of humidity (70% and 80% 

respectively), unlike the third level of humidity (90%RH). PC3 and PC4 also showed a good level 

of separation between the humidity levels than the other PCs which showed more overlapping. 

 
Figure 20. PCA loading vectors on the full NIRS spectral data of sunflower sprouts after 
smoothing (Savitzky-Golay filter) and MSC pre-treatments, in the 1100-1800nm range. 

The corresponding loadings plot shown in Figure 20 showed 83.182% of the total variance 

described by the first two PCs (PC1 and PC2) and the most contributing wavelengths to the two 

PCs were found at 1266, 1382, 1394, 1450, 1452, 1534, 1618, and 1771.  
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Figure 21. Principal component analysis (PCA) Scores on the full NIRS spectral data of 
sunflower sprouts calculated by the three levels of temperature against the highest humidity 
(90%) variable after XDS smoothing (Savitzky-Golay filter) and MSC pre-treatments in 
the 1100-1800nm range. PCA Score dots coloured by humidity:  temperature T15_RH90 
(coloured in black dots), temperature T19_RH90 (coloured in red dots), and temperature 
T23_RH90 (coloured in green dots). Total Number of Observations, N = 234. 

 
In Figure 21Error! Reference source not found., a subset of the full data comprising of only 

samples exposed to the highest humidity (90% RH) was selected for PCA analysis and calculated 

by the three different levels of temperature. The result showed a separation trend for the PCA 
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scores according to the temperature levels and different PCs, as can be seen in the highlighted PC3 

and PC5. It can be observed that the spectral characteristics of temperature 3 (230C) were dominant 

and the grouping clearly showed the difference between the different temperature levels. It 

confirms the previously observed trends from Figure 18  and Figure 19  that the spectral 

characteristics of the lower levels of temperature were more broadly dispersed and overlapping 

than the highest level of temperature, which had a distinct dense and dominant spectral.  

 

 
Figure 22. PCA Loading Vectors of the full spectral data of sunflower sprouts calculated 
by the three levels of temperature against the highest humidity (90%) variable after the 
XDS smoothing (Savitzky-Golay filter) and MSC pretreatment spectra in the range 1100-
1800nm.  

 
Figure 22 shows corresponding loading vectors with 84.247% of the total variance described by 

the first two PCs (PC1 and PC2). For PC1, 1266, 1382, 1452, 1612, and 1768 were found to be 

important in its formation whereas 1394, 1454, and 1534 wavelengths contributed more for PC2.   
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5.3 Classification of sunflower sprouts according to Temperature, Humidity, 
Treatments, and Day Variables by Linear Discriminant Analysis 

The Linear Discriminant Analysis based on the Principal Component Analysis (PCA-DA) model 

built for sunflower sprouting time classification can be seen in the following figures (Figure 23, 

Figure 24, and Figure 25). 

 

 
Figure 23. Results of PCA-DA classification for days of sunflower sprouting at the lowest 
temperature (150C) and by three levels of relative humidity: (a) humidity 70%, (b) 
humidity 80%, and (c) humidity 90%, after the XDS smoothing (Savitzky-Golay filter) and 
MSC spectra pre-treatments, in the 1100-1800nm range. Total Number of Observations, N 
= 72 each. 

 
Figure 23 highlights three plots from the combination of the lowest temperature (150C) by the 

three levels of relative humidity. The LDA results showed only from Day 6, 8, 10, and Day 12 at 

this first temperature level because the plants at the low-temperature levels (15°C and 19°C) were 

harvested and measured only on the mentioned days because it was observed that sprouting time 
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is slow unlike in high temperature when sprouting time is fast and significant changes in growth 

and development of plants occur immediately as observed in Figure 25.  

 

Generally, the three plots showed similar separation tendencies based on root 1, with only slight 

differences across the three different humidity levels for the five days of observation. All three 

plots/combinations were correctly classified with 100% accuracy for recognition and prediction, 

hence signifying that although other roots contributed to the discrimination of the samples, root 1 

explains the majority percentage of the variance. Furthermore, the 100% recognition and 

prediction value signify that there were no false predictions of sunflower sprouting time within the 

5-day experimented time interval.  

 

In the first LDA treatment plot (T15 plot), it can be observed that the days follow a certain order in 

the PCA-DA plot, especially for T15H70 treatment where it can be seen in root number 1 

(horizontal axis) that the order is Day 6, Day 8, Day 10, Day 12. Root number 1 explains about 

92% of the sample variance meanwhile root number 2 (vertical axis) shows a clearer discrimination 

between Day 4 and Day 5. Root number 2 explains about 4.85% of the variance.  Furthermore, 

Day 2 and Day 3 showed separate plots, which may indicate similar patterns in the relationship 

between the temperature, humidity, and sprouting time during the initial phases of growth. It may 

also indicate the high sensitivity of spouts to environmental conditions during early sprouting 

stages, with different combinations of temperature and humidity variables exerting different 

effects on the sprouting process. However, Day 10 and Day 12 plots showed slight overlapping, 

which may indicate that certain temperature and humidity levels/combinations can have similar 

sprouting outcomes towards the later stages of growth. It can also imply that sprouts’ response to 

environmental factors may stabilize over time, hence lessening the impact of these factors on the 

sprouting time and process. This is in line with a study by Benincasa et al. (2019) which 

demonstrated that factors such as temperature and humidity may have a substantial impact on plant 

growth and development, particularly during sensitive phases such as the early seedling growth 

phase (Benincasa et al., 2019).  

 

In the second (T15H80) and third treatments (T15H90) plots of the temperature 1 combinations, 

it can be seen that the intersection was between Day 3 and Day 4 for the T15H80 combination and 
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Day 6 and Day 10 for the T15H90 combination. However, these plots only give an idea of the 

discrimination as they show only root 1 and root 2, with other roots not shown, necessitating the 

recognition and prediction values with their values of misclassification as shown in Appendix 3 

and Appendix 4. Based on their classification values, root number 1 explains about 82% of the 

sample variance for the second treatment and 69% of the sample variance for the third treatment 

while root number 2 (vertical axis) shows a clearer explains about 15% and 21% of the variance 

for the second and third treatment respectively.   This unique response signifies that certain 

combinations of temperature and humidity variables may have a similar influence on sprouting 

outcomes, regardless of the day or duration of the sprouting process.  

 

 

 
Figure 24. Results of PCA-DA classification for days of sunflower sprouting at the median 
temperature (190C) and by three levels of relative humidity: (a) humidity 70%, (b) 
humidity 80%, and (c) humidity 90%, after XDS smoothing (Savitzky-Golay filter) and 
MSC spectra pretreatment, in the 1100-1800nm range. Total Number of Observations, N 
= 72. 

D12

D6

D8 D10

D10

D10

D12

D12

D8

D8

D6

D6

T19H70 T19H80

a
b

c
T19H90



 

 47 

Figure 24 features three plots from the combination of the median temperature (190C) by the three 

levels of relative humidity.  

 

These plots showed similar separation tendencies based on root 1, with only slight differences 

across the three different humidity levels for the five days of observation. Just as in Figure 23, 

although there were some levels of overlapping, the model presents 100% accuracy for recognition 

and prediction, which indicates that root 1 explains most of the variance amongst other roots. And 

that there were no false predictions of sunflower sprouting time within the 4-day experimented 

time interval.  

 

Just as in Figure 23, the different plots for the three combinations under the median temperature 

(T19H70, T19H80, T19H90 combinations) showed some specific separation and intersection of 

plots for the duration of the analysis, which can be attributed to the fact that some combinations 

of temperatures and humidity variables can have similar and even differing influences on sprouting 

outcomes, irrespective of the stage of the sprouting process.  

 

In the LDA treatment plots of the median temperature, it can be observed that the days follow a 

certain order in the PCA-DA plot, especially for T19H80H and T23H90H treatment where it can 

be seen in root number 1 (horizontal axis) that the order is Day 6, Day8, Day 10, Day 12. For the 

first treatment plot T19H70, Root number 1 explains about 46.87% of the sample variance 

meanwhile root number 2 (vertical axis) explains about 37.32% of the variance.  Meanwhile, in 

the second treatment plot T19H80, Root number 1 explains about 61.22% of the sample variance 

meanwhile root number 2 (vertical axis) explains about 27% of the variance.  However, the third 

treatment plot - T19H90 had the highest accurate classification values, with Root number 1 

explaining about 84.65% of the sample variance meanwhile root number 2 (vertical axis) explains 

about 14.9% of the variance.  
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Figure 25. Results of PCA-DA classification for days of sunflower sprouting at the highest 
temperature (230C) and by three levels of relative humidity: (a) humidity 70%, (b) 
humidity 80%, and (c) humidity 90%, after XDS smoothing (Savitzky-Golay filter) and 
MSC spectra pretreatment, in the 1100-1800nm range. Total Number of Observations, N 
= 90. 

Figure 25 highlights three plots from the combination of the highest temperature level (230C) by 

the three levels of relative humidity. Interestingly, much unlike other temperature levels, the LDA 

results showed from Day 1-Day 5. This indicates that at high-temperature levels, significant 

changes can occur even from the early stages of sprouting which can impact the growth and 

development of plants.  

 

Just as for Figure 23 and Figure 24, all three plots/combinations were again correctly classified 

with 100% accuracy for recognition and prediction, hence signifying that there were no false 

predictions of sunflower sprouting time within the 5-day experimented time interval. 
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The classification results of sunflower sprouts are given in Table 4. The table below presents the 

various combinations of the variables used for the Linear Discriminant Analysis (LDA) of 

sunflower sprouting time, and their corresponding average prediction and recognition values from 

the LDA models. These combinations of the variables are necessary to predict the performance of 

the LDA model as well as provide critical insights into how these factors influence the predictive 

performance of the model.  

Table 4. LDA recognition and prediction rates with classification according to days from 
different variable combinations (temperature and humidity) in the 1100-1800 range. 

Levels/Combinations Recognition 

Value 

Prediction Value Classification Concept 

T15H70 100 100 Dataset from a specific 

temperature and 

humidity and classified 

according to different 

sprouting days. 

T15H80 100 100 

T15H90 100 100 

T19H70 100 100 

T19H80 100 100 

T19H90 100 100 

T23H70 100 100 

T23H80 100 100 

T23H90 100 100 

 

From Table 4, it can be observed that the LDA analysis had perfect prediction and recognition 

values of 100% across all combinations of temperature and humidity.  

The lowest prediction and recognition value (60.59% and 60.29% respectively) obtained from this 

analysis was for all treatments (that is a combination of all temperatures and humidity levels), 

which remains above average.  
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Table 5. LDA recognition and prediction rates from specific humidity dataset with 
classification according to days in the 1100-1800 range. 

Levels/Combinations Recognition 

Value 

Prediction Value Classification Concept 

H70 91.49 89.48 Dataset from a specific 

humidity level and 

classified according to 

different sprouting days. 

H80 87.95 85.55 

H90 86.31 85.89 

C_DayAllRH (RH 1, 

2, and 3) and Temp 

(T1, 2, and 3) 

71.94 70.41 Dataset from all 

humidity levels and 

classified according to 

different sprouting days 

 

Table 5 also shows high prediction and recognition values of over 70% for dataset from specific 

humidity levels and classified according to days. However, the modeling with the dataset for all 

measurement days and all humidity levels had the least accurate recognition and prediction values 

at 71.94% and 70.41% respectively.   

Table 6. LDA recognition and prediction rates from specific temperature dataset with 
classification according to days in the 1100-1800 range. 

Levels/Combinations Recognition 

Value 

Prediction Value Classification Concept 

T15 92.81 92.59 Dataset from a specific 

temperature and 

humidity and classified 

according to different 

sprouting days. 

T19 92.14 90.73 

T23 90.38 89.62 

 

Table 6 shows higher prediction and recognition values of over 90% for the dataset from specific 

temperature levels and classified according to days, with the least accurate recognition and 

prediction values at 90.38% and 89.62% from the T23°C dataset.  
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The high values indicate that the LDA model successfully classified and predicted the growing 

conditions of sunflower sprouts with perfect accuracy, especially for the temperature and humidity 

conditions tested. The high level of accuracy indicates that these variables strongly influence the 

growing conditions of plants. 

 

The cross-validation table for the recognition and prediction of some datasets of importance that 
present misclassification is shown in Appendix 3 and Appendix 4. In  
Appendix 3, the classification of the sunflower sprouts subjected to different levels of humidity 

(70%, 80%, and 90%) is shown. The modeling showed high values of accurate classification, 

above 85% in all cases, but with some misclassifications. The modeling according to relative 

humidity 70% (RH70%) presented the highest accuracy for recognition and prediction at 91.498% 

and 89.482% respectively. Although the modeling for RH80% presented a higher accuracy for 

recognition (87.958%), it had a slightly lower accuracy for prediction (85.557%) compared to the 

model for RH90% which had an accuracy value of 85.891% for prediction.  

 

Appendix 4 highlights the classification of the sunflower sprouts subjected to different levels of 

temperature (15°C, 19°C, 23°C). The modeling also showed high values of accuracy in 

classification, above 70% in all cases, but with some misclassifications. The modeling according 

to temperature 15°C (T15°C) presented the highest accuracy for recognition and prediction at 

92.817% and 92.595% respectively, followed by the modeling for T19°C with accuracy values of 

92.144% and 90.732% for recognition and prediction respectively. However, the modeling for 

T23°C had the least accurate recognition and prediction values at 90.38% and 89.62% respectively.   

5.4 Results of Partial Least Square regression (PLSR) to Predict the Parameters of 
Sunflower Sprout based on NIR Spectroscopy 

 
To assess the efficiency of NIRS for predicting brix, dry matter, height, and other parameters of 

sunflower sprouts, different predictive models were built. The figures (Figure 26, Figure 27, 

Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, and Figure 33) show the predictive 

models/ Y-fit graph and their corresponding vectors for sunflower sprouts parameters tested in 

combination with temperature and humidity. Figure 29 



 

 52 

 
Figure 26. Y-fit graph for the prediction of brix content in sunflower sprout samples after 
the XDS smoothing (Savitzky-Golay filter) and MSC spectra pre-treatments in the 1100-
1800nm region. 

Figure 26, shows PLSR for brix content for all the sunflower plants which were growth at different 

temperature and humidity combinations for the five measurement days across the 12-day sprouting 

period. It can be observed that the coefficient of determination for calibration (R2C) was 0.61 with 

a root mean square error of calibration (RMSEC) of 0.73 ºBx. Following the cross-validation, 

R2CV and RMSECV were 0.51 and 0.82 ºBx respectively. From the scatter points, it can be seen 

that in the lower days (Day 4 colored by black, day 6 colored by red, and day 8 colored by green), 

there were higher values of brix compared to the brix content for later days, especially day 10 and 
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day 12. This is in line with a study by (Massa et al., 2015) which demonstrated that brix content 

decreased with a longer harvest period, indicating lower sugar contents as plants aged.  

 

 
Figure 27. Regression vector of the sunflower sprouts’ brix content PLSR model, with 
total sample number (N) = 702 and 12 components.  

 

Figure 27 shows the corresponding regression vector for the sunflower sprouts’ brix content PLSR 

model. The figure presented a high number of contributing wavelengths. The main contributing 

wavelengths with the highest peaks included 1116, 1148, 1210, 1322, 1368, 1394, 1425, 1488, 

1511, 1544, and 1598. The high absorbance within the region of 1300-1600 indicates a high 

content of water and a lesser amount of organic compounds in the sunflower sprout samples. Based 

on previous studies, the wavelength range around 1488 is associated with OH/NH stretching 

(Slavchev et al., 2015; Tsenkova et al., 2018), while the wavelength range of 1140 (which is the 

closest band to the 1148 wavelength found in Figure 27)  is associated with the combination 

overtone of free water (Tsenkova et al., 2018).  



 

 54 

 
Figure 28. Y-fit graph for the prediction of the sunflower sprout height after the XDS 
smoothing (Savitzky-Golay filter) and MSC spectra pre-treatments in the 1100-1800nm 
region. 

From Figure 28, the coefficient of determination for calibration (R2C) was 0.78 with a root mean 

square error of calibration (RMSEC) of 1.23 cm. After the cross-validation, R2CV and RMSECV 

were 0.71 and 1.42 cm respectively. The number of components (# comps) established to achieve 

the best model was seventeen with 702 total samples for the five measurement days across the 12-

day sprouting period. From the scatter points, it can be seen that the earlier (Day 4 colored by 
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black, day 6 colored by red, and Day 8 colored by green) had lower height values compared to the 

height values for later days, especially Day 10 and day 12.  

 

 
Figure 29. Regression vector of the sunflower sprouts’ height PLSR model, with total 
sample number (N) = 702 and 17 components. 

Figure 29 shows the corresponding regression vector for the PLSR model for sunflower sprouts’ 

height values. Similar to Figure 27, it presented a high number of contributing wavelengths with 

the main contributing wavelengths found at 1138, 1376, 1386, 1472, 1484, 1622, 1695, and 1749. 

The wavelength range of 1484 was previously reported by (Slavchev et al., 2015; Tsenkova et al., 

2018) as associated with OH/NH stretching, while the wavelength range of 1140 (which is the 

closest band to the 1138 wavelength found in Figure 29Figure 27)  is associated with the 

combination overtone of free water (Tsenkova et al., 2018). 
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Figure 30. Y-fit graph for the prediction of dry matter content in sunflower sprout samples 
after the XDS smoothing (Savitzky-Golay filter) and MSC spectra pre-treatments in the 
1100-1800nm region. 

Figure 30 shows the Y-fit graph for the prediction of dry matter content in the sunflower sprout. 

From this figure, it can be seen that the coefficient of determination for calibration (R2C) was 0.62 

with a root mean square error of calibration (RMSEC) of 0.04 m/m%. After the cross-validation, 

R2CV and RMSECV were 0.41 and 0.06 m/m% respectively. The number of components (# 

comps) established to achieve the best model was nineteen with 702 total samples for the five 

measurement days across the 12-day sprouting period. From the scatter points, it can be seen that 
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the earlier (Day 4 colored by black, day 6 colored by red, and day 8 colored by green) had lower 

dry matter content compared to the dry matter values for later days, especially day 10 and day 12.  

 

 
Figure 31. Regression vector of the sunflower sprouts’ dry matter content PLSR model, with 
total sample number (N) = 702 and 19 components. 

 

Figure 31 shows the corresponding regression vector for the PLSR model for sunflower sprouts’ 

dry matter content. Similar to Figure 27 and Figure 29, it presented a high number of contributing 

wavelengths with the main contributing wavelengths found at 1129, 1148, 1274, 1310, 1351, 1372, 

1456, 1501, 1614, and 1748.  
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Figure 32. Y-fit graph for the prediction sunflower sprout samples kept at 15°C and 90% 
of relative humidity during the 12-day sprouting period after the XDS smoothing 
(Savitzky-Golay filter) and MSC spectra pre-treatments in the 1100-1800nm region. 

The PLSR regression model, for samples belonging to 15°C and 90% of relative humidity, 

according to the days of the experiment, showed a fairly high prediction capacity of R2 for 

calibration and cross-validation of 0.82 and 0.71, respectively; and RMSE for calibration and 

cross-validation of 0.94 days and 1.20 days, respectively. Similar results were presented regarding 

other temperature and humidity combinations. 
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Figure 33. Regression vector of the sunflower sprouts PLSR model, with sprouts kept at 
15°C and 90% of relative humidity during the 12-day sprouting period. Total sample 
number (N) = 72 and 4 components.  

 

As shown in Figure 33, the main contributing wavelengths of 1100-1800 nm model for the PLSR 

model were few and included 1142, 1206, 1286, 1388, 1503, 1654, and 1718.  
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6. SUMMARY  

The main objective of this study was to assess the suitability of NIRS in monitoring the growing 

process of commercially valuable sprouting plants, namely sunflower under different temperature 

and humidity levels. Based on the study goal, NIR spectroscopy was applied and the Metrohm 

XDS RapidContent Analyser enabled the acquisition of the spectra in the select wavelength range 

of 1100-1800nm.  

Advanced statistical techniques like the Principal Component Analysis (PCA) and the Linear 

Discriminant analysis (LDA) were applied for the accuracy of analysis. The results from all 

analyses indicate the influence of temperature and humidity on the growing conditions of 

sunflower sprouts.   

Specifically, the PCA results showed some trend of separation based on temperature and humidity 

conditions/levels. In most cases, the PCA results exhibited separate groupings/clusters that indicate 

that sunflower sprouts exposed to different combinations of temperature and humidity variables 

may exhibit distinct patterns during the sprouting process. Notably, from the PCA result of the 

highest temperature and humidity levels combination, the clear uniquely distinct pattern affirmed 

previous studies’ results that high temperature and humidity levels may induce environmental 

stress and affect plants’ overall growth and development. 

These findings were corroborated by the LDA analysis which qualitatively classified the data, with 

consistently high accuracy and prediction values, hence correctly predicting the growing 

conditions of sunflower sprouts according to temperature and humidity combinations. While all 

LDA results had high prediction and recognition values, the results from the analysis of specific 

conditions of different temperature and humidity levels showed perfect accuracy at 100% for all 9 

combinations. However, the full data set analysis for all temperature and humidity levels were 

misclassified by almost 40%, as it had the lowest prediction and recognition values at 60.595% 

and 60.295% respectively.  

Furthermore, the PLSR regression models showed an average prediction capacity with the 

regressions (R2) for brix, dry matter, and height above 0.5 in all cases.  The PLSR results for the 

variables were modest considering the full dataset from the temperature and humidity 

combinations that were used, which the best model was for height.  
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Overall, the consistently high accuracy of the predictive model indicates its reliability in 

classifying sprouts at different environmental conditions accordingly and demonstrates the 

efficiency of NIR for monitoring the growing conditions of sunflower sprouts.  

Although the major sprout of interest used for this study was the sunflower sprout, complementary 

studies were done on other plants like pea plants during my MSc program which supports the 

findings of this research, where NIRS were used to assess the temperature and humidity stress 

factors. 

Conclusively, this study addresses a critical knowledge gap in the existing literature regarding the 

growing conditions of sunflower sprouts under temperature and humidity factors/different stress 

factors/varying environmental conditions. While the study has demonstrated that different growing 

conditions result in varying compositions of the plant, which may be useful knowledge for 

fulfilling the dietary needs of people, however, as it is not conclusive research, the potential for 

improvements exists, including developing rapid and nondestructive techniques to monitor these 

changes to help in precision food production and precision diet. Furthermore, the potential for 

improvements may include expanding the scope of environmental variables (e.g light and water) 

beyond just temperature and humidity, long-duration different sprouts large sample size analysis, 

nutritional profiling of the monitored sprouts, and more robust regression models for prediction.  
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APPENDICES 

Appendix 1. Applications of sprouts for food product formulation and improvement in the food 
industry (Miyahira et al., 2021) 
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Appendix 2. Pharmacological properties of sprouts, health benefits and their food applications 
(Aloo et al., 2021; Waliat et al., 2023). 
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Appendix 3. Confusion table of the PCA-LDA models for the sunflower sprouts 
subjected to three different humidity levels (70%, 80%, and 90%) according to the 
measurement days. 
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Appendix 4. Confusion table of the PCA-LDA models for the sunflower sprouts subjected 
to three different temperatures levels (15°C, 19°C, 23°C) according to the measurement 
days. 
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