APPENDICES **Appendix 1.** Applications of sprouts for food product formulation and improvement in the food industry (Miyahira et al., 2021) | Sprouts | Food applications | Positive aspects | Negative aspects | References | |----------------------|--|---|---|---------------------------------------| | Amaranth | Sprouted
amaranth flour as
an ingredient in
food formulations | Increase in the concentrations of soluble protein, total phenolic content, total flavonoid content, total anthocyanin content, and antioxidant activity | Not reported | Sandoval-
Sicairs et al.,
2020 | | | | Increase in antioxidant activity, total phenolic and flavonoid contents, protein, and dietary fiber contents of amaranth seeds. Decrease in total lipid content. | Not reported | Perales-
Sánchez et
al., 2014 | | Amaranth
and chia | Beverages with
sprouted
amaranth and
chia flours | Increase in protein and dietary fiber contents, and high sensory acceptability. | Not reported | Argüelles-
López et al.,
2018 | | Blue maize | Sprouted blue
maize flour as an
ingredient in food
formulations | Increase in protein content,
antioxidant activity, and total
phenolic, dietary fiber, and
anthocyanin contents. | Not reported | Chavarín-
Martínez et
al., 2019 | | Brown Rice | Bread made with
sprouted brown
rice flour | No significant difference in the acceptability scores for aroma, flavor, and taste between the formulated bread and the control bread. | Bread formulations had
lower loaf volume and
greater hardness than
wheat bread due to the
absence of gluten in rice. | Charoenthaikij
et al., 2010 | | Buckwheat | Bread made with
sprouted
buckwheat flour | Breads made using buckwheat flour still contained flavonoids in significant amounts. | The negative impact of baking on the polyphenol content suggests that some degradation may have occurred. | Alvarez-
Jubete et al.,
2010 | | Chia | Sprouted chia
flour as an
ingredient in food
formulations | Higher protein and total phenolic contents, antioxidant activity, γ-aminobutyric acid, essential amino acids, and total dietary fiber contents than non-sprouted grain chia flour. | Not reported | Gómez-Favela
et al., 2017 | | Lentil | Bread made with
sprouted lentil
flour | Increase in the content of phenols and flavonoids in bread plus 10% of sprouted grain lentil flour; Sensory acceptance. | Higher hardness and less cohesiveness than wheat bread possibly due to the greater resistance of the swollen starch during the cooking process. | Hernandez-
Aguilar et al.,
2020 | | Moth bean | Sprouted moth
bean flour as an
ingredient in food
formulations | Higher gelation and thermal stability, and lower viscosity degradation than non-sprouted beans. Higher gelation and thermal stability, and lower viscosity degradation than non-sprouted beans. | Decrease in ash content
due to the draining out of
macro and microelements
from the flour through
soaking and cooking. | Medhe et al.,
2019 | | | NY 41 24 | Y | D. Lordon a C.C. | T :4 - 1 | |--|--|---|---|-------------------------------------| | Mung bean | Noodle with
sprouted mung
bean flour | Improvement in protein content and functional properties such as water absorption, water solubility, oil absorption ability, and water retention. | Reduction of fat content
due to the consumption of
fat in the germination
process. | Liu et al.,
2018 | | | | | Reduction of pasting viscosity with the increase of germination time due to the starch degradation. | | | | Bread made with composite flour | Increase in phenolic and protein contents. | Decrease in loaf height
and volume due to the
decrease in the swelling
index. Increase in loaf
weight due to increased
water retention. Lower
acceptance score. | Menon et al.,
2015 | | Quinoa | Sprouted quinoa
flour as an
ingredient in food
formulations | Increase in copper and zinc availability improved the stability of the foam, increase in amylolytic enzyme levels. | Decreased the ability to foam due to proteolytic modification. | Suárez-
Estrella et al.,
2020 | | Sorghum | Sprouted
sorghum flour as
an ingredient in
food formulations | Reduction of antinutritional factors
such as phytate, tannin, oxalate, and
improved functional properties | Reduction of bulk density and viscosity due to the action of amylase. | Ojha et al.,
2018 | | Wheat | Sprouted wheat flour as an ingredient in food | Increased the levels of tocopherols, niacin, riboflavin, as well as free and bound phenolic compounds. | Not reported | Zilic et al.,
2014 | | | formulations | Gluten degradation promoted by germination. | Impairment of the functional properties of germinated wheat flour due to higher solvent retention. | Boukid et al.,
2018 | | | Bread made with
sprouted wheat
flour | Increased phenolics and protein contents. | Decrease in starch digestibility due to the increased content of resistant starch. | Świeca et al.,
2017 | | | | Increase in antiradical and chelating compounds as well as phytochemicals. The bioactive compounds were potentially bioaccessible. The replacement of wheat flour by SF in up to 10% had little influence on the total acceptability. | Bread with less elastic, little sprung back after compression and characterized by sticky, wet crumbs when 15 and 20% of the wheat flour was replaced by germinated flour. | Gawlik-Dziki
et al., 2017 | | | Wheat bread
enriched with
sprouted wheat
flour rich in
phenolic
compounds | Baking properties comparable to those of control flour. | Decrease in total phenolic content, total flavonoid content, and antioxidant activity. | Tian et al.,
2019 | | Wheat, | Bread made with | Flour: Increase in peptides, free | Flour: increased | Montemurro | | barley,
lentil,
nozzle
grain, and
quinoa | sprouted wheat
flour | amino acids, and γ-aminobutyric acid contents. Decreased concentrations of phytic acid, condensed tannins, raffinose, and trypsin inhibitors. | microbiological contamination. Bread: higher value of hardness and | et al., 2019 | | quinoa | | Bread: high digestibility protein content; No significant differences in the specific volume. | fracturability. | | **Appendix 2.** Pharmacological properties of sprouts, health benefits and their food applications (Aloo et al., 2021; Waliat et al., 2023). | Sprouts | Pharmacological
properties/
Phytochemicals | Health benefits | Food Applications | References | |----------------------|--|--|--|---| | Pea sprouts | Salicylic derivatives | Salicylic derivatives Antimicrobial, Anti- inflammatory, analgesic, antipyretic effects, cardioprotective, and neuroprotective activities. | | Ho et al., 2006 | | Ramson
sprouts | Alliins, flavonoids,
polyphenols, and
thiosulfinates | Anti-inflammatory,
antioxidant,
antidiabetic activities | Used as healthy herbs and food spices | Sobolewska et al.,
2015; Silva et al.,
2013. | | Lentil
sprouts | Phytic acid,
phytosterols, and
saponins | Antioxidant, cholesterol-
reducing, cardioprotective,
anticarcinogenic,
immunomodulation
properties | Sprouted lentil flour used in breadmaking | Hernandez-
Aguilar et al., 2020 | | Fenugreek
sprouts | Sapogenins,
fenugreekine,
saponins, coumarin,
and nicotinic acid | Antioxidant, blood sugar
regulating, cholesterol-
reducing, anti-
inflammatory,
anticoagulant properties | Used as food
additives: colour and
seasoning enhancer | El-GebalY et al.,
2022 | | Ginger and turmeric | Gingerols, paradols,
phenolics
terpenoids, shogaols,
and curcuminoids | Anti-inflammatory,
antioxidant, antibacterial,
antioxidants, and
anticarcinogenic properties | Used as
preservatives, spices,
flavour and colour
enhancer | Retana-Cordero et al., 2021 | | Amaranth
and chia | Polyphenols, and proteins | Antioxidant, anti-
inflammatory, blood sugar-
regulating properties | Sprouted amaranth
and chia flours used
in making functional
beverages | Argüelles-López
et al., 2018 | | Wheat
sprouts | Phenolic acids,
tocopherols, and
carotenoids,
quercetin, lectins | Antioxidant, anti-
inflammatory, and
cardioprotective properties | Sprouted wheat flour
used in bakery
products | Ojha et al., 2018 | | Mung bean sprouts | Flavonoids,
isoflavonoids,
flavone and
isoflavone | Antioxidant, anti-
inflammatory,
phytoestrogenic,
neuroprotective,
anticarcinogenic activities | Sprouted mung bean
flour used in making
noodle | Diego et al., 2020 | | Buckwheat
sprouts | Quercetin, lectins,
anthocyanins and
flavonoids | Anti-inflammatory,
hypocholesterolemic,
antioxidant,
antidiabetic, and anticancer
activities. | Sprouted buckwheat
flour used in
breadmaking | Alvarez-Jubete et
al., 2010; Bastida
et al., 2015;
Watanabe and
Ayugase et al.,
2008 | | Quinoa
sprouts | Total phenolics and anthocyanins | Anticancer, antioxidant,
Anti-inflammatory,
antidiabetic activities | Sprouted quinoa flour used as an ingredient in food formulations | Liu et al., 2018;
Guo et al., 2011,
Charron et al.,
2007. | **Appendix 3.** Confusion table of the PCA-LDA models for the sunflower sprouts subjected to three different humidity levels (70%, 80%, and 90%) according to the measurement days. | Humidity | | | 70%RH | Į . | | | 80%RH | | | | | | 90%RH | | | | | | | |------------------------------|-----------------------|----------------------|------------------|-------------------|------------|------------|--------|----------------------|------------------|----------------|-----------------|-------------------------------|-------------------------|------------------|--------------------------------|-------------------|------------|--|--| | Av | erage R | ecogniti | on (91.4 | 198%) | | | Averag | e Recog | nition (8 | 37.958% | b) | Average Recognition (86.318%) | | | | | | | | | Days | D4 | D6 | D8 | D10 | D12 | Days | D4 | D6 | D8 | D10 | Days | D4 | D6 | D8 | D10 | D12 | | | | | D4 | 94.57 | 1.86 | 0 | 0 | 0 | D4 | 100 | 5.56 | 0 | 0 | 0 | D4 | 94.57 | 0.92 | 1.86 | 0 | 0 | | | | D6 | 5.43 | 83.31 | 10.19 | 0.92 | 0 | D6 | 0 | 72.22 | 5.56 | 0 | 0 | D6 | 0 | 95.36 | 2.78 | 6.47 | 0 | | | | D8 | 0 | 4.64 | 89.81 | 5.56 | 0 | D8 | 0 | 5.56 | 94.44 | 4.64 | 0 | D8 | 0 | 0 | 88.89 | 0 | 0 | | | | D10 | 0 | 10.19 | 0 | 91.67 | 1.86 | D10 | 0 | 15.75 | 0 | 85.17 | 12.03 | D10 | 5.43 | 1.86 | 5.56 | 76.86 | 24.08 | | | | D12 | 0 | 0 | 0 | 1.86 | 98.14 | D12 | 0 | 0.92 | 0 | 10.19 | 87.97 | D12 | 0 | 1.86 | 0.92 | 16.67 | 75.92 | | | | | | | | | | • | • | | | | | • | | | | | | | | | Humidity | | Humidity 70%RH | | | | | | 809 | %RH | | | 90%RH | | | | | | | | | Average Prediction (89.482%) | Av | zerage P | redictio | n (89.4 | 82%) | | | Avera | ge Predi | ction (8 | 5.557% |) | | Averag | e Predic | | .891%) | | | | | Days Av | erage P
D4 | Prediction D6 | on (89.48
D8 | 82%)
D10 | D12 | Days | | ge Predi
D6 | - | 5.557%)
D10 | D12 | Days | Averag
D4 | | | .891%)
D10 | D12 | | | | | | | | / | D12 | Days
D4 | | | ction (8 | | | | | e Predic | tion (85 | | D12 | | | | Days | D4 | D6 | D8 | D10 | | | D4 | D6 | ction (8
D8 | | D12 | Days | D4 | e Predic
D6 | tion (85
D8 | D10 | | | | | Days
D4 | D4 88.18 | D6 3.72 | D8 | D10 | 0 | D4 | D4 | D6 5.56 | D8 | | D12
0 | Days
D4 | D4 94.17 | Predic
D6 | D8 1.83 | D10 | 0 | | | | Days
D4
D6 | D4 88.18 11.82 | D6 3.72 83.29 | D8 0 9.28 | D10 0 1.83 | 0 | D4
D6 | D4 | D6 5.56 72.22 | D8 0 5.56 | D10 0 0 | D12 0 0 | Days
D4
D6 | D4
94.17
0 | D6 0 94.5 | tion (85
D8
1.83
3.72 | D10 0 5.56 | 0 | | | ## Appendix 3 Temperature T15°C **Appendix 4**. Confusion table of the PCA-LDA models for the sunflower sprouts subjected to three different temperatures levels (15°C, 19°C, 23°C) according to the measurement days. T19°C T23°C | Average F | nition (9 | 92.817% | | Aver | rage Re | cognitio | n (92.1 | 44%) | | F | Average | Recogn | nition (7 | 71.942% | (o) | | | | |-------------|-------------------|----------|--------|-------|---------|------------------------------|---------|-------|-------|-------|---------|------------------------------|-----------|---------|-------|-------|-------|--| | Days | D6 | D8 | D10 | D12 | | Days | D6 | D8 | D10 | D12 | | Days | D4 | D6 | D8 | D10 | D12 | | | D6 | 100 | 2.78 | 0 | 0 | | D6 | 94.49 | 0 | 0 | 0 | | D4 | 82.58 | 2.47 | 0 | 0 | 1.55 | | | D8 | 0 | 89.81 | 2.78 | 0 | | D8 | 3.66 | 87.03 | 3.7 | 0 | | D6 | 11.92 | 70.98 | 9.88 | 10.19 | 0 | | | D10 | 0 | 7.42 | 84.25 | 2.78 | | D10 | 0 | 12.97 | 89.83 | 2.78 | | D8 | 0 | 4.01 | 71.6 | 5.56 | 0.93 | | | D12 | 0 | 0 | 12.97 | 97.22 | | D12 | 1.84 | 0 | 6.47 | 97.22 | | D10 | 4.6 | 19.14 | 14.51 | 59.88 | 22.84 | | | | | | | | | | | | | | | D12 | 0.91 | 3.4 | 4.01 | 24.38 | 74.69 | Temperature | Temperature T15°C | | | | | | T19°C | | | | | | T23°C | | | | | | | Average | Predi | ction (9 | 2.595% |) | | Average Prediction (90.732%) | | | | | | Average Prediction (70.415%) | | | | | | | | Days | D6 | D8 | D10 | D12 | | Days | D6 | D8 | D10 | D12 | | Days | D4 | D6 | D8 | D10 | D12 | | | D6 | 100 | 1.83 | 0 | 0 | | D6 | 96.26 | 0 | 1.83 | 0 | | D4 | 77.36 | 4.31 | 0.61 | 1.24 | 1.85 | | | D8 | 0 | 92.61 | 5.56 | 0 | | D8 | 1.87 | 88.89 | 3.72 | 0 | | D6 | 16.98 | 68.52 | 9.87 | 8.65 | 0 | | | D10 | 0 | 5.56 | 83.33 | 5.56 | | D10 | 0 | 9.28 | 83.33 | 5.56 | | D8 | 0 | 4.94 | 70.38 | 4.94 | 2.46 | | | D12 | 0 | 0 | 11.11 | 94.44 | | D12 | 1.87 | 1.83 | 11.11 | 94.44 | | D10 | 3.79 | 18.52 | 13.58 | 60.49 | 20.37 | | | | | | | | | | | | | | | Davs | D4 | D6 | D8 | D10 | D12 | |