Title of thesis: Purification of β-Galactosidase Enzyme by Probiotic *Limosilactobacillus fermentum* LF08

Student author of the thesis: Ramez Jamal Al Massadeh

Food Science and Technology Engineering, Master training, Hungarian University of Agriculture and Life Sciences, Budai Campus, Institute of Food Science and Technology.

Insider subject leader: Erika Bujna, Associate professor,

Kristijan Hristovski, PhD student, Quang D. Nguyen, full professor, Department of Bioengineering and Alcoholic Drink Technology

Thesis Abstract

This thesis aims to evaluate the purification protocol for β -galactosidase from the probiotic strain *Limosilactobacillus fermentum* LF08. Several critical steps were taken during the purification process, including enzyme fermentation, determining the optimal ammonium sulfate saturation, and cell lysis. A glucose and galactose ratio of 1:3, 1% (v/v) inoculation, and 16 hours of fermentation at 37°C was applied during fermentation to achieve the highest enzyme activity. Optimal ammonium sulphate saturation was found to be 75%, leading to the highest β -galactosidase activity, consistent with previous findings. Lysozyme incubation at 45°C for 4 hours resulted in the highest β -galactosidase activity compared to other temperatures. The purification process included precipitation, dialysis, and FPLC chromatography. The enzyme had a specific activity of 11,572 U/mg after cell disruption and 23,075 U/mg after precipitation. However, after dialysis, the particular activity dropped to 3,315 U/mg, indicating a possible loss of essential cofactors or coenzymes. The overall yield remained stable at around 41%, indicating that the purification protocol is efficient.

The *Limosilactobacillus fermentum* LF08 purification protocol was found to be effective when compared to other studies on β -galactosidase purification from various probiotic strains. These findings have important implications for industrial applications and future research.