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1 Introduction  

The advent of electric vehicles (EVs) represents a transformative shift in the automotive industry, 

driven by the imperative for sustainability and bolstered by rapid advancements in technology. 

Central to this transformation is the development of electric axles (eAxles), which consolidate 

essential drivetrain components into a singular, efficient unit. This thesis introduces the 

development of a Part Recognition Tool for eAxles, employing advanced image recognition 

technologies enhanced by artificial intelligence (AI). This tool is designed to automate the 

identification and categorization of eAxle components, thereby facilitating a more nuanced and 

efficient analysis during the developmental phases of these crucial elements. Situated at the 

confluence of mechanical engineering and artificial intelligence, this research explores the 

potential of digital technologies to revolutionize the development and analysis of mechanical 

components in EVs. The Part Recognition Tool aims to minimize human error and optimize the 

efficiency of development workflows through the automation of part recognition tasks. By 

streamlining these processes, the tool not only aims to enhance the speed and accuracy of 

component analysis but also to significantly reduce development costs and time-to-market for new 

eAxle designs. 

The research begins with a comprehensive review of existing image recognition models and 

machine learning algorithms, identifying those that hold the most promise for adaptation to the 

complexities of eAxle components. This foundational work informs the creation of a specialized 

dataset, meticulously annotated to detail the diverse parts of eAxles. This dataset serves as the 

basis for training and testing the AI models developed in this thesis. The integration of such a 

dataset is critical, as it reflects real-world variability and complexity, providing a robust platform 

for the AI to learn and adapt effectively. In terms of methodology, this thesis employs a 

combination of qualitative and quantitative research techniques. Qualitative analysis involves a 

thorough review of scholarly literature and existing technologies, focusing on their application 

within mechanical engineering contexts and pinpointing the gaps this project aims to address. 

Quantitatively, the project entails the experimental training of machine learning models, rigorous 

validation of these models, and a detailed statistical analysis of their performance. The objective 

is to develop a model that achieves high accuracy and reliability in recognizing and categorizing 

eAxle parts under various conditions. This dual approach ensures that the research is grounded in 

solid theoretical foundations while also being tested against empirical standards. 

The structure of the thesis ensures a coherent presentation of the research. It begins with this 

introduction, which sets the stage by outlining the research problem and its significance. 

Subsequent chapters delve into the detailed literature review, describe the methodology for dataset 

creation and model development, and present the results of model testing. The discussion interprets 

these results, comparing them with established technologies and drawing conclusions about their 

practical implications. The thesis concludes with a summary of the research contributions and 

proposes directions for future investigations in this vibrant field of study. The anticipated impact 

of this research extends beyond the academic, suggesting practical applications that could 

influence future designs and maintenance strategies for electric vehicles, potentially setting new 

industry standards for automated systems in automotive engineering. 
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2 Literature Review 

2.1 Introduction of the Literature Review 

In the vast realm of artificial intelligence, image classification plays a vital role in various 

applications like facial recognition, medical imaging analysis, and autonomous vehicle navigation. 

It enables systems to categorize images into different classes based on their content, transforming 

complex visuals into structured data that can be used for analysis and practical purposes. This 

transformation is crucial for systems to interact with and interpret the visual world effectively. 

The core of this literature review centers on evaluating the robustness and efficiency of ResNet 

architectures, specifically the ResNet-18 and ResNet-50 models, in their application to complex 

and imbalanced datasets. These models are celebrated for their profound capabilities in deep 

learning, particularly adept at learning from the intricate and hierarchical data structures that are 

typical in scenarios where data is not uniformly distributed across categories.  

ResNet architectures incorporate innovative features like skip connections, which are crucial for 

overcoming the vanishing gradient problem—a common challenge in training deep neural 

networks. These skip connections help gradients flow smoothly during the training process, 

enabling the construction of deeper networks without encountering the usual training difficulties 

associated with increased depth. 

This review aims to shed light on three primary aspects. Firstly, it explores the structural elements 

of ResNet models that enhance their ability to address vanishing gradients, leading to improved 

training effectiveness and model performance. Secondly, it examines how these models perform 

on imbalanced datasets, which is essential for ensuring fair and accurate outcomes in AI 

applications. Lastly, it evaluates the scalability and adaptability of ResNet models, considering 

how well they handle changes in dataset size and complexity—a crucial factor for their practical 

deployment in real-world applications, where computational resources and data availability can 

vary significantly. 

By conducting an extensive analysis of existing literature on ResNet models, this review highlights 

their unique capabilities in streamlining the image classification process and ensuring accurate 

representation of all classes in a dataset despite inherent challenges. These insights contribute to 

both the theoretical framework of image classification and practical applications, suggesting ways 

to enhance the performance and reliability of machine learning systems that deal with image-based 

data. This comprehensive examination not only deepens our understanding of ResNet architectures 

but also provides actionable insights that could inspire future innovations in the field of artificial 

intelligence. 

2.2 Image Classification in Machine Learning 

Machine learning is a specialized area within the discipline of artificial intelligence that focuses 

on enabling computers to acquire knowledge and improve their performance through learning. 

Although this perspective is basic, ever since the inception of the first computer, we have pondered 
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the capacity of computers to acquire knowledge in a manner similar to humans. In 1959, Samuel 

et al. introduced a set of methods to develop an algorithm with the goal of enabling computers to 

outperform inexperienced people in the game of checkers. The goal was ambitious, especially 

considering the restricted availability of hardware at that time. Nevertheless, this demonstrates the 

significance of machine learning since the inception of computers.   

Learning is a highly intricate process, and there is no consensus on its definition. However, for 

humans, learning can be characterized functionally as alterations in behavior that occur as a result 

of experience or mechanistically as changes in the organism that occur as a result of experience 

(De Houwer et al., 2013). Computers are computational devices; therefore, we must see learning 

as a computer algorithm. Figure 1 illustrates the visual representation of classical programming 

(a) and machine learning (b). It is important to note that traditional programming focuses on 

determining the correct output based on provided inputs and a program. In contrast, machine 

learning focuses on identifying the correct program, referred to as a model, based on a set of inputs 

and outputs, which may be empty. The sophisticated program is now capable of suggesting novel 

outputs based on fresh inputs. 

Fig. 1 clearly demonstrates that there are substantial differences in the understanding of learning 

between humans and computers. Machine-learning algorithms strive to create a model that 

precisely reflects the input data in order to propose new outputs. Returning to the definitions of 

machine learning, we highlight two primary explanations. The initial one, introduced by Samuel 

et al. (1959), defines machine learning as a discipline that enables computers to learn without direct 

programming. It should be noted that Samuel's definition was one of the earliest proposed 

definitions. Almost forty years later, Mitchell (1997) presented a more formalized perspective on 

machine learning. According to Mitchell, a computer program can be considered to learn from 

experience E in relation to a specific task T and a performance measure P if its performance on T, 

as evaluated by P, demonstrates improvement with increasing experience E.  

From the observations made so far, the process of machine learning can be categorized into four 

distinct steps: The process involves obtaining the training set X, selecting and executing a learning 

task using X, constructing a model, and evaluating the model using new inputs. These four stages 

can be iterated until a satisfactory P value is achieved. It is important to consider that when 

confronted with a machine-learning problem, the initial obstacle is determining the appropriate 

machine-learning algorithm to employ. Thousands of options are now accessible, and each year, 

hundreds of new options are presented (Domingos, 2012). The collection of potential learning 

Fig. 1 Traditional programming (a) and Machine learning (b) (Duarte & Ståhl, 2019). 
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algorithms that can be used to solve a specific machine-learning problem is referred to as the 

hypothesis space. In order to avoid confusion amidst the vast array of options, the learning 

components can be categorized into three distinct groups (Domingos, 2012):  

• Representation: An algorithm must be used to represent a task. In order to narrow down 

the hypothesis space, it is crucial to determine the specific form of learning that we are 

interested in.  

• Evaluation: The projected outputs must be tested to determine the effectiveness of the 

chosen representation. Various evaluation functions can be employed depending on the 

specific task at hand.  

• Optimization: After analyzing the findings of the assessment component, it is necessary 

to perform optimization. The objective of the learning algorithm is to optimize a specified 

performance metric. 

The assessments of a machine learning model are conducted on previously unseen instances from 

the same dataset that was used for training (Duarte & Ståhl, 2019). 

2.2.1 Machine Learning Algorithms in Image Classification 

The creation of automated image classification algorithms has risen to prominence as a critical 

research area over the last several decades. These algorithms are utilized in a wide array of sectors, 

such as web search engines, digital libraries, geographic information systems, biomedicine, 

surveillance, e-commerce, sensor networks, manufacturing, and educational systems. Within these 

applications, image classification functions as an initial organizational tool, categorizing images 

in databases into categories that carry semantic meaning. This activity is central to the disciplines 

of pattern recognition, image processing, and computer vision, which have been heavily focused 

on the identification, detection, and categorization of a specific spectrum of objects or ideas within 

distinct application areas. Essential to this process is the extraction of features, where fundamental 

attributes of images like color, texture, and dimension are examined. Machine learning techniques 

are implemented to effectively determine the classifications of these attributes (Chen et al., 2010). 

This section will explore four machine-learning techniques. 

2.2.1.1 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are advanced learning systems that operate within a high-

dimensional space, leveraging linear functions shaped by hypotheses (Roweis et al., 200). These 

systems are trained through an optimization-focused algorithm that incorporates a bias informed 

by statistical learning theory. The primary objective in using SVMs for classification is to develop 

an effective method for identifying optimal hyperplanes that facilitate data separation in this 

multidimensional space, thereby enhancing generalizability. The term 'computationally efficient' 

refers to the capability of these algorithms to handle very large data sets efficiently (Tao et al., 

2008 & Belkin et al., 2001). SVMs are typically applied to binary classification problems. Drawing 

from Bennett's (2000) discussion, consider a dataset comprising “1” observations, each 

represented by a pair {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖is an N-dimensional vector and 𝑦𝑖 is a class indicator with 

values of -1 or 1. The goal is to discover the best possible hyperplane, an (N-1) dimensional surface 
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that distinctly separates these classes. Initially, it is presumed that such a hyperplane is feasible, 

characterized by a normal vector w, with two parallel planes established on either side:  

𝑊 × 𝑥𝑖 ≥ 𝑏 + 1 for  𝑦𝑖 = 1                                                                                                          (1) 

𝑊 × 𝑥𝑖 ≤ 𝑏 − 1 for  𝑦𝑖 = −1                                                                                                       (2) 

Here, b represents the offset of the plane from the origin. Often, separating data requires a non-

linear solution plane, which can be computationally intensive to achieve through repeated 

optimization of the separation between two non-linear functions (Li et al., 2008 & Tao et al., 2007). 

To address this, the kernel trick is employed, where input data are transformed into a higher 

dimensional feature space using a specific kernel function. In this transformed space, the data 

become linearly separable. Additionally, a technique to handle errors and outliers in the input data 

has been developed. This involves allowing a permissible error of up to ξ in each dimension, 

creating what is termed a 'fuzzy margin,' and incorporating a penalty function C(i) into the 

optimization equation, as discussed by Burges. The goal is to minimize this function. 

1/2‖𝑊‖2 + 𝐶 × (∑ξ𝑖)                                                                                                                 (3)                            

Subject to the constraint: 

𝑦𝑖(𝑊 × 𝑥𝑖 − 𝑏) + ξ𝑖 ≥ 1                                                                                                              (4) 

Solving this is significantly more challenging than the separable case. In the LIBSVM manual by 

Chang and Lin, the constraints, conditions for minimization, and the resulting decision functions 

are specified for each classification type. Additionally, the manual includes algorithms for 

addressing the necessary quadratic programming challenges. 

Support Vector Machines were initially crafted solely for binary classification tasks. However, 

adaptations have been made to extend SVMs to handle multi-class classification problems through 

two principal methods, both aimed at breaking down the complex multi-class scenario into simpler 

binary classification tasks. The "one against all" method is the first of these approaches. In this 

method, individual binary classifiers are developed for each class to distinguish it from all other 

classes. Upon evaluating each data point, the classifier that reports the highest decision score 

assigns its respective class to the point (Hsu and Lin 2002). This technique involves creating N 

classifiers corresponding to the number of classes, each yielding a decision function. While rapid, 

this approach can be vulnerable to inaccuracies arising from training sets that are not perfectly 

balanced. An iteration of this method simplifies the process by solving a single optimization 

problem to extract all N decision functions, potentially reducing the need for as many support 

vectors as would be necessary when each binary classification is handled separately. The second 

approach, "one against one," involves training classifiers for every possible pair of classes. Each 

object is then classified based on the most frequently identified class across all classifiers for that 

object. To finalize the classification, a maximum-winner technique is applied. This method 

requires the use of N(N-1)/2 classifiers, marking it as more computationally intensive than the 

"one against all" approach. Despite its complexity, this method has been found to be better suited 

for addressing the nuances of multi-class classification tasks (Hsu and Lin 2002), and as such, it 

has been preferred for applications in SVM-based object image classification.                                                                                                                                                                                                                                                                                                                                                                                 
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2.2.1.2 Decision Trees 

Decision tree ensemble methods hold significant popularity in machine learning due to their ability 

to enhance an existing algorithm by aggregating the outputs of multiple models. Particularly when 

combined with decision trees, these methods excel in performance; this combination tends to 

surpass the accuracy of decision trees used alone, which may not always compete well with other 

algorithms. Given their success across various domains and their ability to rival other advanced 

algorithms, ensemble methods utilizing decision trees serve as an excellent foundation for 

developing a universal system for image classification, where no specific assumptions about the 

problem are made (Ouma et al., 2008). 

In this context, the suggestion is to employ a specific ensemble approach involving decision trees 

for tackling image classification tasks. This method involves the construction of a multitude of 

extremely randomized trees, initially introduced in (Kim et al., 2009). These trees resemble 

traditional decision trees in structure (Pesaresiand & Benediktsonn, 2001) but differ significantly 

in their development process. Unlike the standard method, where a tree is developed top-down, 

selecting tests at each node to optimize a score measure, the extremely randomized approach 

selects tests and thresholds randomly at each node. This randomness is based on the mean values 

present, simplifying the recursive function used in image classification. 

In practice, the system begins with a learning set comprising all examples. Tests start at internal 

nodes, such as comparing a pixel’s value at a specified position to a threshold, to facilitate the 

classification. By constructing multiple such trees, ideally as many as feasible from the same 

learning set, the system enhances its predictive accuracy. When classifying an image, it is 

successively processed through all trees, and the most frequently occurring class among the 

outputs is assigned to the image. This method encapsulates several procedural steps of the 

algorithm, underscoring its robustness in handling image classification (Kumar et al., 2012).  

• Build extra tree (LS) (Kumar et al., 2012):  

1. If LS contains all images of the same class, then return a leaf with this class associated with it;  

2. Otherwise:  

I. Set [𝛼𝑘,1 < 𝛼𝑡ℎ] = Choose a random split (LS).  

II. Split LS into L𝑆𝑙𝑒𝑓𝑡 and L𝑆𝑟𝑖𝑔ℎ𝑡 according to the test [𝛼𝑘,1 < 𝛼𝑡ℎ] and build the subtrees 𝑇𝑙𝑒𝑓𝑡 

build extra tree (L𝑆𝑙𝑒𝑓𝑡) and 𝑇𝑟𝑖𝑔ℎ𝑡= build extra tree (L𝑆𝑟𝑖𝑔ℎ𝑡) from these subsets. 

3. Create a node with the test  [𝛼𝑘,1 < 𝛼𝑡ℎ] attach 𝑇𝑙𝑒𝑓𝑡  and 𝑇𝑟𝑖𝑔ℎ𝑡 as successors of this node and 

return the resulting tree. 

• Choose a random split (LS) ((Kumar et al., 2012):  

1. Select a pixel location (K,1) at random;  

2. Select a threshold 𝑎𝑡ℎ random according to a distribution N (µ𝑘,1, 𝑅𝑘,1), where µ𝑘,1 and, 𝑅𝑘,1are 

respectively the mean and standard deviation of the pixel values 𝛼𝑘,1in LS. 
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3. If the score of this test is greater than a given threshold 𝑆𝑡ℎ return the test [𝛼𝑘,1<𝛼𝑡ℎ]. 

4. Otherwise, return to step 1 and select a different location. If all locations have already been 

considered, then return the best test so far. 

2.2.1.3 Random Forests 

Random forests are a method used to construct a classification ensemble by growing a set of 

decision trees in randomly chosen subspaces of data (Breiman, 2001). Empirical evidence has 

demonstrated that random forest classifiers can attain a noteworthy level of accuracy when 

categorizing data in areas characterized by a large number of parameters and numerous classes 

(Breiman, 2001 & Banfield, 2007). Various techniques have been suggested for constructing 

random forest models using subsets of data (Breiman, 2001 & Ho, 1998). One of the most widely 

used methods for constructing forests in the field of forestry, as suggested by (Breiman, 2001), is 

to randomly choose a subset of features at each node to create branches in decision trees. Then, 

the bagging method is employed to generate subsets of training data for constructing individual 

trees. Finally, all the individual trees are combined to create a random forest model (Breiman, 

2001). However, when applied to image data, which is characterized by high dimensionality, 

sparsity, and multi-class labels, random forests face challenges.  

To address these challenges, Xu, Ye, and Nie (2012) propose two strategies. The first strategy is a 

feature weighting method for subspace sampling. This method computes feature weights based on 

the correlations between features and the class label. Features with higher weights are more likely 

to be selected in the construction of decision trees, thus improving their classification power. The 

second strategy is a tree selection method aimed at excluding "weak" trees from the random forest 

ensemble. This is done by evaluating the importance of each tree using out-of-bag accuracy and 

selecting only the top-performing trees for the final ensemble. 

Xu, Ye, and Nie (2012) present their improved random forest algorithm (Fig. 2), which 

incorporates both the feature weighting method and the tree selection method. In this algorithm, 

feature weights are used to guide the sampling of features for each decision tree, and only the top 

80% of trees with high out-of-bag accuracy are included in the ensemble. The experimental results 

support the effectiveness of the proposed method in generating better random forests for image 

classification tasks. 
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Fig. 2 Improved Random Forest Algorithm (Xu, Ye, & Nie, 2012). 

2.2.1.4 k-Nearest Neighbors (k-NN) 

K-Nearest Neighbors (KNN) classifiers demonstrate effective image classification when a query 

image closely resembles a labeled image within its class. Nearest Neighbor (NN) classifiers are 

particularly robust in specific image classification fields characterized by a high number of labeled 

images relative to class complexity. From a theoretical standpoint, NN classification approaches 

the Bayes optimal classifier as the sample size becomes infinitely large (Guo et al., 2002 & Vapnik, 

1995). Nonetheless, NN classifiers struggle to generalize beyond the set of labeled images. This 

limitation becomes apparent in practical scenarios where the available number of training or 

labeled images is disproportionately small compared to the complexity of the class. Poor 

classification results often occur when there are few labeled images for classes that exhibit 

significant variability in object shape and appearance. In situations where images are characterized 

by "bag-of-features" histograms, "Image-to-Image" distance is defined as the distance between 

two images' descriptor distributions, which can be calculated through methods like histogram 

intersection, Chi-square, or KL divergence (Bian & Tao., 2010). While typical NN image 

classifiers evaluate the descriptor distribution for each image individually (Dalla Mura et al., 2011 

& Dalla Mura et al., 2010), utilizing the descriptor distribution from the entire class (all images in 

class C) could enhance generalization. This approach allows for an "Image-to-Class" distance 

measurement by computing the KL distance between the query descriptors and the class 

descriptors. Even if the "Query-to-Image" KL distance is substantial for all labeled images in a 

specific class, such as Ballet, a small "Query-to-Class" KL distance can still facilitate accurate 

classification. 

2.2.2 Feature Extraction Techniques 

Feature extraction plays a crucial role in machine learning for image classification. It involves 

transforming raw data into a set of features that effectively differentiate between different classes. 
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Here are some commonly used techniques for feature extraction in machine learning for image 

classification: 

2.2.2.1 Color Features 

 Color features utilize color histograms, color moments (mean, variance, skewness), and color 

coherence vectors. A color histogram represents the distribution of colors within an image and is 

robust to changes in orientation and scale. This technique is particularly valuable in scenarios 

where color serves as a significant distinguishing characteristic of the objects being classified 

(Gonzalez & Woods, 2002). 

2.2.2.2 Texture Features 

Texture features capture the visual patterns and their spatial arrangement in an image. Popular 

methods for extracting texture features include the Gray Level Co-occurrence Matrix (GLCM), 

Local Binary Patterns (LBP), Gabor filters, and Tamura features. These techniques measure 

properties such as contrast, coarseness, and directionality of the texture in an image (Haralick, 

Shanmugam, & Dinstein, 1973). 

2.2.2.3 Shape Features 

 Shape features describe the geometric properties of an object. Techniques like edge detection 

(using filters like Sobel or Canny), region-based segmentation, and morphological features (such 

as perimeter, area, and convexity) are commonly employed. Shape features are especially 

important in applications where the shape of objects serves as a strong indicator of their class 

(Zhang & Lu, 2004). 

2.2.2.4 Invariant Feature Transform (SIFT) 

In the field of computer vision, the Scale-Invariant Feature Transform (SIFT) algorithm identifies 

and characterizes local features within an image. SIFT features facilitate accurate matching across 

different perspectives of the same subject, thanks to their resistance to changes in scale, orientation, 

and partial resistance to variations in lighting (Das & Vijaykumar, 2010). The process of extracting 

SIFT features involves four main steps. Initially, potential interest points in the image are identified 

by detecting extrema across various scales using Difference of Gaussian (DOG) filters applied to 

the image. Points that are in low-contrast regions or along edges are subsequently removed. Each 

of the remaining points is then assigned an orientation based on the gradients of the surrounding 

image. In the final step, local image features are calculated from the image gradients around each 

key point. These features are represented as 128-element vectors, defined within the 4 x 4 

neighborhoods surrounding each key point (Das & Vijaykumar, (2010).  In other words, the Scale 

Invariant Feature Transform (SIFT) method, as detailed in the Kher & Thakar, (2014), is a robust 

image processing technique primarily used for image matching and registration. It excels in 

identifying and matching key features across images that are invariant to scale, rotation, and 

partially to changes in illumination and 3D viewpoint. The SIFT algorithm involves four main 

stages: scale-space extrema detection to identify potential interest points, keypoint localization to 

refine positions and eliminate weak candidates, orientation assignment to ensure rotation 

invariance and keypoint descriptor formation to create unique fingerprints for each key point. 
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These descriptors enable reliable matching of features across varied conditions, proving SIFT's 

effectiveness in applications such as object recognition, 3D reconstruction, and video tracking. 

The paper highlights SIFT's distinctive capability to handle complex transformations and 

challenging environments, demonstrating its broad utility in computer vision tasks. 

2.2.2.5 Histogram of Oriented Gradients (HOG) 

In many cases, HOG descriptors can often be utilized in a similar manner to SIFT descriptors. Vo 

et al. (2013) specifically explore the use of HOG as a mechanism for extracting features in image 

classification tasks. Similar to SIFT, HOG descriptors enable an image classifier to identify 

matches between a given image and the images used to train the classifier. This is achieved by 

constructing a visual bag-of-words (BoW) model of the HOG descriptor and combining it with a 

machine learning algorithm like SVM. HOG descriptors are typically represented in three-

dimensional space due to the way they are generated. Additionally, their size tends to be large, 

depending on the image resolution. Fig. 3 illustrates the HOG descriptors created from an 

accordion image. Unlike SIFT, HOG allows for the configuration of a parameter called the number 

of orientations (O), which can significantly influence the resulting features (as depicted in Fig. 3b 

and Fig. 3c). This flexibility enables HOG to be applied to various image detection problems. 

 

Fig. 3   Visual representation of HOG descriptors (Vo et al., 2013). 

Fig. 4 outlines the steps involved in extracting HOG descriptors from an image. The process begins 

by dividing the image into equal-sized cells, as shown in Fig. 4(a). Within each cell, a histogram 

of gradient directions or edge orientations is accumulated over the pixels, as depicted in Fig. 4(b). 

The orientation θ (x, y) and magnitude r (x, y) of a pixel (x, y) are calculated using a 1-D discrete 

derivations mask [-1,0,1] and its transpose [−1,0,1]𝑇. The magnitude r (x, y) is computed using 

the color channel with the highest gradient magnitude. Assuming the number of orientations O is 

set to 9, there will be 18 directed orientation bins allocated, representing one bin for every 20° 

within the range of 0° to 360°: 2 orientations (+/-) for each of the 9 undirected gradient directions 

(Dalal et al.2005). 
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The next step in HOG is block normalization, where blocks are formed by grouping four adjacent 

cells together (sliding each cell), as shown in Fig. 4(c). Let vector v represent the stacking of the 

positive direction histogram in a block, and ‖𝑣‖2 be the two-norm of 𝑣 and є along with a very 

small number (assumed to have an insignificant value). The norm (𝑙2-norm) of a block is defined 

as (Vo et al., 2013): 

𝑣 = 𝑣
√‖𝑣‖2

2 + є 2
⁄                                                                                                                        (5) 

The final step, Fig. 4(d), generates the actual descriptors. For each cell, four normalization factors 

are obtained as the inverses of the norms of the four blocks containing it. The cell's undirected 9-

dimensional histogram is then normalized using each normalization factor separately. The 

resulting histograms are stacked and clipped at 0.2. This process yields a vector of length 36 (4 × 

9), which serves as the HOG descriptor representing the cell (Vo et al., 2013). 

 

Fig. 4 Process of creating HOG descriptors (Vo et al., 2013). 

2.2.2.6 Gabor Filters 

A feature extractor plays a crucial role in enhancing the accuracy of a classifier by providing 

visually distinctive patterns. One such feature extractor is the Gabor filter, which selectively 

extracts patterns from a signal or data at specific frequencies. The Gabor filter is created by 

modulating harmonic functions with a Gaussian distribution function. The concept of the Gabor 

filter was initially introduced by Dennis Gabor in the 1940s and later extended to 2D filters by 

Daugman in the 1980s (YI & Su. 2014) (Singh & Dhir, 2012). The Gabor filter is defined by 

multiplying a sinusoidal wave with a Gaussian function. The real and imaginary components of 

the filter are generated by the cosine and sine waves, respectively. These two components can be 

combined into a complex number, as expressed below. 

ℎ = (𝑥, 𝑦, 𝜆, 𝜙, 𝜎𝑥, 𝜎𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦
× 𝑒

−
1

2
(

𝑥′2

𝜎𝑥
2 

+
𝑦′2

𝜎𝑦
2)

× 𝑒𝑖(
2𝜋𝑥′2

𝜆
)
                                                         (6) 

Where 𝑥′ and 𝑦′ are:  

𝑥′ = 𝑥 𝑐𝑜𝑠 𝜙 + 𝑦 𝑠𝑖𝑛𝜙  and   𝑦′ = 𝑦 𝑐𝑜𝑠 𝜙 − 𝑥 𝑠𝑖𝑛𝜙 
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The wavelength and orientation of a Gabor filter are typically represented by λ (lambda) and θ 

(theta), respectively. The parameter σ (sigma) denotes the standard deviation of the Gaussian 

envelope in a one-dimensional plane. By utilizing various scales and orientations, a Gabor filter 

bank can be created (Yi et al., 2009) (Haghighat et al., 2015). For instance, a filter bank consisting 

of 40 filters can be generated by employing 5 scales and 8 orientations, as illustrated in Fig. 5 

(Haghighat et al., 2015). 

Fig. 5 Gabor Filter Bank for five Scales and eight Orientations (Tahir et al., 2016). 

The filter bank can be convolved with an image, resulting in the extraction of features and the 

creation of a structure called a feature map. This process is performed across different orientations 

and scales using the following equation. 

Feature Map (x, y) =  ∑ ∑ 𝐼𝑚 (𝑘1, 𝑘2)ℎ(𝑥 − 𝑘1, 𝑦 − 𝑘2, 𝜆, 𝜙, 𝜎𝑥 , 𝜎𝑦)∞
𝑘2=−∞

∞
𝑘1=−∞                       (7) 

The concept of feature extraction mentioned above is demonstrated in Fig. 6. In this illustration; 

an image undergoes convolution with a Gabor filter bank to generate a feature map for different 

orientations and scales. It is important to note that this process involves a significant number of 

computations, as indicated in reference (Wang et al., 2002). 

A feature map is generated for every combination of Gabor filters for each image channel. In the 

case of using a single-channel image with dimensions 32x32, convolving the original image with 

40 Gabor filters would result in 40 feature maps, each with a size of 32x32. 



21 
 

 

                  Fig. 6 Feature Maps computed by Convolution of Image and Gabor Filters (Tahir et al., 2016) 

2.3 The Rise of Deep Learning and Convolutional Neural Networks 

Deep learning is a subset of machine learning and has been one of the most significant 

advancements and areas of intense research in machine learning lately. Deep learning is a form of 

representation learning in which the machine acquires multiple internal representations from raw 

data to perform classification or regression tasks (LeCun et al., 2015). This distinguishes it from 

traditional machine learning algorithms that typically rely on expertly engineered features based 

on domain knowledge (Bengio et al., 2013). Deep learning models are constructed in a layered 

structure, with each layer learning a set of hidden representations. These representations are often 

not easily interpretable by humans. Each layer's representations are composed nonlinearly from 

the representations of the previous layer. This enables the model to initially learn simple 

representations in the early layers, such as detecting edges and strokes, which are then combined 

to form progressively more complex and abstract representations in subsequent layers (Zeiler et 

al., 2014). By learning from the representations of the preceding layer only, a general-purpose 

learning algorithm like back propagation (LeCun et al., 1988) can be employed to train a given 

network. 

2.3.1 Convolutional Neural Networks (CNNs) 

In 2006, Professor Geoffery Hinton and his student Ruslan Salakhutdinov made a significant 

contribution to the field of deep learning. They published a paper in a prestigious academic journal 

called Science (Hinton et al., 2006). The paper highlighted two key points. First, it emphasized the 

remarkable ability of artificial neural networks with multiple hidden layers to learn complex 

features. These networks could extract abstract and fundamental representations from the input 

data through training. Second, the researchers introduced a technique called "layer initialization," 

which used unsupervised learning algorithms to express hierarchical information in the input data. 

This method proved effective in reducing the challenges associated with training deep neural 

networks. Following this breakthrough, the significance of deep learning gained substantial 

attention in both academic and industrial circles. It led to remarkable advancements in areas such 

as speech recognition, image recognition, and natural language processing. In the early 1960s, 
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researchers Hubel and Wiesel made significant progress in understanding the visual cortex of cats. 

They introduced the concept of receptive fields (Hubel et al., 1962) and discovered how information 

is processed hierarchically in the visual pathway. Their groundbreaking work earned them the 

Nobel Prize in Physiology or Medicine. By the mid-1980s, Fukushima et al. (1982) built upon the 

concept of receptive fields and developed what can be considered the first implementation of 

Convolutional Neural Networks (CNNs). These networks mimicked the local connectivity and 

hierarchical structure found in biological neural networks. The idea was to break down visual 

patterns into subpatterns, which were then processed by cascaded feature planes. This approach 

proved effective, even for recognizing small objects. Building on this progress, researchers began 

experimenting with artificial neural networks, specifically using a multi-layer perceptron Ruck et 

al., (1990) instead of manually extracting features. They applied a simple stochastic gradient 

descent method and introduced the backpropagation algorithm for calculating error gradients, 

which proved highly effective (Rumelhart., 1986). LeCun et al. (1990) focused on handwritten 

digit recognition and introduced the gradient backpropagation algorithm to train convolutional 

neural network models. They demonstrated superior performance compared to existing methods 

using the MNIST dataset (LeCun et al., 2010). The success of the gradient backpropagation 

algorithm and convolutional neural networks brought new hope to the field of machine learning. 

It paved the way for statistical learning models and propelled the artificial neural network into a 

phase of rapid development. Today, convolutional neural networks are a hot research topic, 

particularly in the fields of speech analysis and image recognition. They represent the first 

successful training of multi-layer neural networks and offer significant advantages when the 

network input is multidimensional. Convolutional neural networks have been successfully applied 

to various large-scale machine learning problems, such as speech recognition, image recognition, 

and natural language processing, contributing to the ongoing exploration and advancement of 

machine learning. 

A convolutional neural network (CNN) is an artificial neural network designed specifically to 

process two-dimensional input data. It consists of multiple layers, with each layer made up of 

several two-dimensional planes. Each plane comprises independent neurons that are not connected 

within the same layer but are connected to adjacent layers. The concept of CNNs draws inspiration 

from early time delay neural networks (Waibel et al., 1989) and TDNNs, which simplify network 

training by sharing weights in the time dimension, making them suitable for processing speech and 

sequential signals. 

CNNs adopt a weight-sharing network structure, making them more akin to biological neural 

networks. The capacity of the model can be adjusted by changing the depth and breadth of the 

network. CNNs are built on strong assumptions about natural images, such as statistical 

smoothness and local correlation. These assumptions enable CNNs to effectively reduce the 

complexity of learning within the network model. They have fewer network connections and 

weight parameters compared to fully connected networks of comparable size. This characteristic 

makes CNNs more trainable and manageable. 

The diagram in Fig. 7 illustrates the structure of a simple convolutional neural network (CNN) 

model. This model comprises two convolution layers (C1, C2) and two sub-sampling layers (S1, 
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S2) that alternate. The process begins with the original input image being convoluted by three pre-

trained filters, also known as convolution kernels, along with bias vectors. This convolution 

operation generates three feature maps in the C1 layer. Next, each feature map in the C1 layer 

undergoes a weighted averaging process within localized regions. This step is accompanied by the 

application of a nonlinear activation function. As a result, three new feature maps are obtained in 

the S1 layer. These feature maps represent the condensed information from the previous layer. The 

feature maps obtained in the S1 layer are then convoluted with three trained filters from the C2 

layer. This process generates three new feature maps, which are passed through the S2 layer. 

Finally, the output of the S2 layer is vectorized and fed into a traditional neural network for further 

training. 

 

Fig. 7 Simplified convolution neural network structure (Lembaga Ilmu Pengetahuan Indonesia et al., 

2017). 

2.3.1.1 ResNet 

Deep convolutional neural networks have spurred numerous advancements in image classification. 

These networks seamlessly combine features across low, mid, and high levels in a multi-layered 

setup, where the complexity of features can be enhanced by the depth of the network—i.e., the 

number of layers stacked together. There's strong evidence indicating that the depth of a network 

is critical for its performance. On demanding datasets like ImageNet, the most successful models 

are those with substantial depth, ranging from sixteen to thirty layers. Additionally, various 

complex tasks in visual recognition have also shown significant improvements when using these 

deeply layered models (He et al., 2015).  

The paper of He et al. (2015) highlights that the depth of networks (i.e., the number of layers) is 

crucial for achieving state-of-the-art results on challenging datasets like ImageNet. However, 

simply increasing the depth of networks can lead to issues such as vanishing/exploding gradients, 

which impede the training process. Although solutions like normalized initialization and 

intermediate normalization layers have mitigated these issues, allowing deeper networks to start 

converging, another problem arises: the degradation of training accuracy as network depth 

increases. This degradation is notably not due to overfitting, as deeper models sometimes show 

higher training errors than shallower ones (He et al., 2015). 
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To address this, the authors introduced a framework called deep residual learning. Instead of 

expecting each stacked layer to directly learn the desired underlying mapping, they proposed that 

these layers should focus on learning a residual mapping. This means that instead of fitting the 

original mapping H(x) directly, they aimed to fit an intermediate mapping F(x): = H(x) - x. By 

recasting the original mapping as F(x) + x, we hypothesize that optimizing the residual mapping 

is easier than optimizing the original mapping without any reference (He et al., 2015). 

To implement this framework, He et al. (2015) feedforward neural networks with "shortcut 

connections," as shown in Fig. 8. Shortcut connections, also known as skip connections, allow 

bypassing one or more layers. In our case, the shortcut connections simply perform an identity 

mapping, and their outputs are added to the outputs of the stacked layers. These identity shortcut 

connections do not introduce additional parameters or computational complexity. The entire 

network can still be trained end-to-end using stochastic gradient descent (SGD) with 

backpropagation.  

Fig. 8 Residual learning: a building block (He et al., 2015). 

He et al. (2015) introded Residual Networks (ResNets), a new architecture that allows for the 

training of significantly deeper neural networks by using residual mappings and shortcut 

connections. This design mitigates the vanishing and exploding gradient problems, enabling the 

training of networks with depths of up to 152 layers. ResNets demonstrated outstanding 

performance on the ImageNet dataset, achieving a top-5 error rate of 3.57%, and also performed 

well across other datasets and tasks, such as COCO for object detection and segmentation. The use 

of identity and projection shortcuts in these networks facilitates easier optimization and better 

generalization, setting a new state-of-the-art for deep learning models in image recognition. 

Since the introduction of ResNet, researchers have proposed various improvements to enhance the 

learning capabilities of the network. One such improvement involves the use of identity mapping 

(He et al., 2016), which establishes direct paths between the residual units and has been found to 

facilitate training. Another enhancement, proposed by Zagoruyko and Komodakis (2016), suggests 

the utilization of wider residual units. Experimental results have demonstrated that employing 

wider residual units in a reasonably deep network leads to performance gains. 

Additionally, merge-and-run mappings in residual units (Zhao et al., 2016) aid in the smooth flow 

of information within the network. These mappings have shown superior performance compared 
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to alternative approaches. Overall, these advancements in the structure of residual units have 

contributed to the continuous improvement of ResNet models. 

2.3.1.1.1 ResNet18  

Residual networks (ResNets) have gained significant popularity due to their impressive 

performance in tasks like image classification. The key factors contributing to their success are the 

use of residual mapping and shortcut connections, which offer better results compared to very deep 

plain networks while also making the training process easier. The deep residual network 

framework was designed to tackle the issue of degradation observed in deeper neural networks. It 

employs an innovative approach that incorporates a shortcut, commonly referred to as a skip 

connection. This skip connection streamlines the transfer of information across layers, effectively 

circumventing the conventional sequential layer progression typical in traditional Convolutional 

Neural Networks. Consequently, the network primarily concentrates on adjusting to the residual 

mappings, as opposed to directly learning from the base mappings. The RESNET has many 

variants, as shown in Fig. 9. (Venkata Sai Abhishek et al., 2022). 

 

Fig. 9 ResNet variants (Venkata Sai Abhishek et al., 2022). 

RESNET18 is a neural network architecture that comprises 18 layers, with the first layer utilizing 

a 7x7 kernel. The network consists of four identical Convolutional Neural Network (ConvNet) 

layers. Each ConvNet layer is made up of two residual blocks. Each residual block consists of two 

weight layers, and a skip connection is established from the output of the second weight layer to 

the main output using a rectified linear unit (ReLU) activation function (Venkata Sai Abhishek et 

al., 2022). 

The skip connection serves an important role in preserving information. If the output of the residual 

block is equivalent to the input of the ConvNet layer, an identity connection is employed. This 

means that the skip connection directly passes the input to the output without any alteration. 

However, if the input and output differ, a convolutional pooling operation is performed on the skip 
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connection. This pooling operation helps align the dimensions of the input and output, ensuring 

consistency in the overall network architecture. 

In Venkata Sai Abhishek et al.'s (2022) study, the performance of the RESNET18 architecture was 

enhanced by adding a sequential layer that includes a linear (512, 512) layer. The output from this 

layer is directed through an initial ReLU activation function, followed by a dropout of 0.2 and 

another linear layer (512, 2). The process concludes with a LogSoftmax function, which computes 

the logarithm of the probabilities derived using the negative log-likelihood loss function. This 

modified network architecture was used to determine the accuracy of a specific image dataset, 

making it applicable for tasks like classification or detection. 

2.3.1.1.2 ResNet50 

The architecture of the Resnet-50 network is detailed in Fig. 10, comprising 50 Conv2D 

operations. The Resnet-50 architecture is segmented into five distinct sections: conv1, conv2_x, 

conv3_x, conv4_x, and conv5_x. Its structure remains generally static, with variations primarily 

in the number of channels, which are adjusted based on the specific requirements of the input (Liu 

et al., 2021). 

It is important to note that the final Average Pooling layer in ResNet-50 converts each feature map 

into a single feature. Consequently, the size of the pooled field matches the size of the feature map. 

For instance, if the final output dimension is 512x7x7, then the pooled field size would be 7(Liu 

et al., 2021). 

Liu et al. (2021) explored the application of the ResNet-50 neural network model for the intelligent 

classification of rock images. The researchers employed the ResNet-50 model to classify images 

of rocks into seven different categories based on images captured under white light illumination. 

They enhanced their dataset by segmenting each image into smaller sections, leading to a 

substantial increase in data volume, which aids in model training and validation. The study 

achieved a promising classification accuracy of 94.12% on the validation set, demonstrating the 

effectiveness of using deep learning for this type of image recognition task. 

2.3.2 Advanced Techniques for Data Preparation and Model Optimization 

2.3.2.1 Image Processing and Recognition 

Image processing is a fundamental aspect of working with images, enabling us to perform more 

advanced tasks and enhance digital photographs. It encompasses a range of techniques, including 

basic ones like optimizing images and reducing noise, as well as more complex techniques like 

segmenting images and identifying key elements. The ultimate goal is to enhance the visual appeal 

and coherence of the images, making them more visually pleasing and understandable. 

The field of image processing introduces us to the essential components and teaches us how to 

apply them in various contexts. In today's world, image processing plays a crucial role in diverse 

applications, such as satellite monitoring of the environment and enhancing medical images for 

better interpretation by doctors. It addresses the significant challenge of enabling computers to 

comprehend and respond to the vast amount of visual data that surrounds us. Photo recognition, at 
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its core, empowers technology to replicate human visual understanding, allowing computers to 

identify and analyze objects, scenes, patterns, faces, text, and more. 

2.3.2.2 Image Types 

2.3.2.2.1 Binary Image 

In a binary image, each pixel is assigned one of just two possible values: 1 or 0. In many software 

programs like MATLAB, a pixel with a value of 1 typically represents an area of interest, while a 

pixel with a value of 0 is considered the background. Binary images are often used alongside other 

types of images to highlight specific areas for processing. Fig. 10 provides a detailed view of some 

of these pixel values (Matlab Image Processing Toolbox User's Guide, 2023). 

Fig. 10 Binary image (Matlab Image Processing Toolbox User's Guide, 2023). 

2.3.2.2.2 Indexed Images 

An indexed image is composed of two main components: an image matrix and a colormap. The 

colormap is a matrix of size c-by-3, where each row represents the red, green, and blue components 

of a specific color. These values are typically in the range of 0 to 1 (Matlab Image Processing 

Toolbox User's Guide, 2023). 

The pixel values in the image matrix serve as indices in the colormap. This means that the color 

of each pixel in the indexed image is determined by finding the corresponding color in the 

colormap based on the pixel value. The specific mapping process depends on the data type of the 

image matrix (Matlab Image Processing Toolbox User's Guide, 2023): 

• If the image matrix is of type single or double, the colormap usually contains integer values 

ranging from 1 to p, where p is the length of the colormap. The value 1 corresponds to the 

first row in the colormap, 2 corresponds to the second row, and so on. 

• If the image matrix is of type logical, uint8, or uint16, the colormap normally contains 

integer values ranging from 0 to p-1. Here, the value 0 corresponds to the first row in the 

colormap, 1 corresponds to the second row, and so forth. 
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Typically, a colormap is stored together with an indexed image and is automatically loaded when 

using the imread function. When you read the image and colormap into your workspace as separate 

variables, it's important to keep track of the association between the image and the colormap. 

However, you have the freedom to choose any colormap you prefer, and you are not limited to 

using the default colormap. 

Fig. 11 illustrates an indexed image, showcasing the image matrix and the colormap. In this 

example, the image matrix is of data type double, which means that a pixel value of 7 corresponds 

to the seventh row of the colormap. 

 

Fig. 11 indexed image (MATLAB Image Processing Toolbox User's Guide, 2023). 

2.3.2.3 Histogram of an Image  

Image processing is performed through image transformations, which are executed using 

operators. These operators take an input image and produce an output image. The goal of image 

enhancement is accomplished through two major approaches. The first approach involves 

reasoning about the statistics of the grey values in the image, while the second approach focuses 

on the spatial frequency content of the image(Image Processing the Fundamentals, 1999). 

One fundamental concept in image processing is the histogram of an image. It is a discrete function 

that counts the number of pixels in the image with specific grey values. By normalizing this 

function to add up to 1 for all grey values, it becomes a probability density function. This 

probability density function provides insights into the likelihood of encountering a certain grey 

value within the image (Image Processing the Fundamentals, 1999). 

Histogram equalization is a technique used to enhance images by making all grey values equally 

probable (Fig. 12, Fig. 13, Fig. 14). It achieves this by redistributing the grey values to create a 

more balanced representation. However, it is important to note that histogram equalization 

programs typically do not produce images with perfectly flat histograms. Instead, they aim to 

improve the overall distribution of grey values and enhance the visual quality of the image (Image 

Processing: The Fundamentals, 1999). 
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Fig. 12 (a) original image (b) after histogram equalization(Image Processing the Fundamentals, 1999). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 (a) Original image (b) After global histogram equalization (c) After local histogram 

equalization(Image Processing: The Fundamentals, 1999). 
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Fig. 14 (a) original image (b) after global histogram globalization(Image Processing The Fundamentals, 

1999) 

2.4 Conclusion 

This literature review has thoroughly examined the effectiveness and adaptability of ResNet 

architectures, specifically ResNet-18 and ResNet-50, in the domain of image classification when 

dealing with complex and imbalanced datasets. These models have demonstrated impressive 

capabilities in handling intricate data structures, which is crucial for achieving unbiased and 

accurate results in various AI applications. The review emphasized the innovative features of 

ResNet architectures, such as skip connections, which play a vital role in addressing the vanishing 

gradient problem and enabling the training of deeper networks.  

Moreover, the review delved into the performance of these architectures in scenarios with 

imbalanced datasets and variable computational resources. The insights gathered indicate that 

ResNet models, with their deep learning capabilities, are not only theoretically significant but also 

adaptable to real-world challenges. They exhibit scalability and maintain high performance even 

when faced with changes in dataset size and complexity. 

Looking ahead, I continued to explore and expand upon the advancements in ResNet models and 

their underlying principles across several operational areas, rigorously testing them under a wide 

variety of aspects and conditions to thoroughly assess their versatility and robustness. 
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3 Material and Methods 

3.1 Linearoch: Systematizing Complex Data Structures for Enhanced Machine Learning 

Preparation 

The proper preparation and organization of data are of paramount importance for the effective 

development and performance of predictive models. Efficient data management improves the 

overall efficiency of the machine learning process.  

Introducing the "Linearoch" script marks a significant milestone in this domain, as it has been 

specifically designed to streamline the handling of intricate data structures. This script automates 

the tasks involved in managing, preprocessing, and organizing extensive and heterogeneous 

datasets, thereby simplifying the process of preparing data for machine learning applications. 

The "Linearoch" script addresses a range of common challenges encountered in data management, 

such as the need to reorganize folder structures, rename files while preserving hierarchical 

relationships, and handle various types of images with meticulous care. Through the automation 

of these tasks, the script not only reduces the potential for human error but also significantly 

decreases the time and effort typically associated with data preparation. The core functionality of 

Linearoch lies in its ability to transform unstructured or semi-structured data repositories into well-

organized formats that are easily accessible and ready for further processing and analysis. 

Linearoch plays a pivotal role in enabling the effective utilization of data for building reliable and 

scalable machine learning models. 

I encountered a complex system folder comprising numerous folders and subfolders (Fig. a15), 

each containing various types of parts and diverse surface characteristics (Fig. b15).  

 

 Fig. 15 (a) Complex system folder (b) eAxle exploded view (Bosch Mobility Solutions, 2024). 
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In addition, there is a source folder where all the photos for the sample are saved in an unsorted 

manner. This folder contains photos, videos, folders, and thumbs files. The data we have varies 

from sample to sample, resulting in an imbalance in the amount of data for each class. This 

imbalance presents challenges during the data preparation stage. To address this, I developed a 

script called "Linearoch" that automates the handling of the classified data, ensuring it is ready for 

the training step.  

The Linearoch script consists of 14 main functions, with two switchable functions for different 

configurations, built upon 21 subfunctions (Fig. 16). A Master Function is included to control the 

flow of the script, making it easier to track the functions and facilitate debugging. 

Fig. 16 Workflow of Linearoch script. 

3.1.1 Copying the Dataset 

The script performs a crucial operation of creating an exact copy of the original dataset and saving 

it in a designated location called "AI_database." During this process, specific files (e.g., 

'Thumbs.db') that may cause issues during the augmentation step are excluded. This operation is 

essential for preserving the integrity of the original data, as it allows for manipulations and 

transformations to be conducted on the duplicate without the risk of altering or damaging the 

source files (Fig. 17). By specifying the source folder, destination base, and an optional new name 

for the copied folder, this function facilitates a seamless transition of the dataset from its original 

state to a workable copy. This step sets the stage for subsequent processing steps, such as renaming, 

resizing, and augmenting the images, by providing a reliable and preserved dataset for further 

operations. 

3.1.2 Submapper 

The "Submapper" function plays a key role in the script by listing the subdirectories within a 

specified directory. This operation is crucial for preparing the data for various processing tasks, 

such as renaming, moving, or copying. The function collects the paths of all subfolders (partial 

paths) and sorts them based on their length. This sorting process is essential for the subsequent 
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step, which involves the renaming function. By sorting the subfolders' paths, the function ensures 

that there are no errors during the renaming process. This sorting process is particularly important 

because it prevents mistakes that could occur if the renaming function were to change the name of 

a parent folder. Such a change would alter the directory of the child folder, leading to errors when 

attempting to rename the child folder. 

The output of the Submapper function will be a list of subfolder paths sorted as follows:  

['Part 1/Sub-Part 1', 'Part 1/Sub-Part 2', 'Part 2/Sub-Part 1', 'Part 2/Sub-Part 2']. 

 

 

 

 

 

 

 

 

Fig. 17 Copied original data set structure. 

3.1.3 Renamer 

The “Renamer” function is tasked with systematically renaming subdirectories within a specified 

base directory by appending the name of each directory's parent as a prefix. It will iterate through 

the Submapper list from the previous step, then extract and append the parent directory’s name to 

the “Main folder” directory’s name; therefore, it transforms the directories to include a hierarchical 

context. This function preserves and clarifies the structural relationships within the directory tree 

to contain the whole paths, thereby enhancing navigability to run ‘os.rename’ for the renaming 

operation, which directly modifies the filesystem to reflect these changes (Fig. 18). 

 

 

 

 

 

 

 

 

Fig. 18 After renaming function. 
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3.1.4 Submapper 

After modifying the names of the subfolders to include the parent folder's name, it is necessary to 

update the list of subfolder names to reflect the changes. As a result, the Submapper function needs 

to be called again. 

The output of this subsequent call to the Submapper function will be as follows: 

 ['Part 1/Part 1+Sub-Part 1', 'Part 1/Part 1+Sub-Part 2', 'Part 2/Part 2+Sub-Part 1', 'Part 2/Part 

2+Sub-Part 2'] 

It is worth noting how the Renamer function has modified the names of the subfolders to include 

the parent folder's name as a prefix. 

3.1.5 Mover 

This function orchestrates the movement of the subfolders, which are specified in the list created 

in the previous step, to a single destination called the "Main Folder" as shown in Fig.  19, located 

alongside their respective parent folders. The function combines the main folder's path with the 

partial path of each subfolder, and then the "move_folder" function is called sequentially to execute 

the actual transfer. By using this function, each folder retains its original name while being 

relocated to a new centralized location. This step is crucial for data preprocessing pipelines that 

require organizing data into specific directory structures for machine learning training. After 

executing this script, the "Main Folder" will contain only one layer of folders, as depicted in the 

accompanying image. 

 

 

 

 

 

 

 

 

 

Fig. 19 Mover function result. 

The purpose of having a one-layer folder structure is crucial because performing augmentation 

runs on sub-subfolders can be challenging. Hence, the augmentation process is designed to operate 

exclusively on the one-layer folder system. Additionally, these folders will serve as the names of 

the classes in the dataset. 
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3.1.6 MPD  

The Minimum Photos Determiner (MPD) function enables the determination of a minimum 

number of photos per class. This step is crucial for maintaining a balanced dataset, which is vital 

when preparing data for machine learning. Sufficient data in each category is essential for training 

effective models. The MPD function plays a key role in this process by identifying and removing 

sparsely populated folders, ensuring that each class has an adequate number of photos. 

3.1.7 Submapper 

The Submapper must be called again to refresh the list of folders after moving the subfolders to a 

different directory. This preparation is necessary for the next step, resizing, because we need 

resizing to occur on all the folders in the 'Main Folder' after moving and deleting the smaller ones.  

3.1.8 Resizing 

3.1.8.1 Resizing without Padding 

This function is engineered to resize images while maintaining their aspect ratios. Capable of 

processing multiple images simultaneously, it offers heightened efficiency and reduces time 

expenditure. Furthermore, it operates across several cores concurrently.  

Fig. 20 compares the performance of the conventional resizing method with that of the parallel 

resizing method: 

                        Fig. 20 (a) Conventional resizing method (b) Parallel resizing method. 
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While there are some differences in the pixel values, as shown in Fig. 20, these do not significantly 

impact the accuracy results of the AI model. 

3.1.8.2 Resizing with padding 

The idea behind this method is to train the model on its designed photo dimensions, rather than on 

rectangular photos, and without stretching the images into square shapes. One proposed solution 

was to add backgrounds to the images during resizing. This function operates by first calculating 

the scaling ratio necessary to fit the image within the target size without distortion. It then resizes 

the image using this ratio to ensure the dimensions are proportionally scaled. After resizing, the 

function creates a new image canvas with the target dimensions, filled with a specified padding 

color (default is white). 

 The resized image is then centered on this canvas, filling any excess space with the padding color. 

This method preserves the aspect ratio of the photos without cropping them to fit the model. 

However, it reduces the number of useful pixels since many pixels will lack information, requiring 

more photos to train the model to disregard these backgrounds. 

3.1.9 Splitter 

The splitter function is designed to organize a collection of files within a specified directory into 

training and validation sets, adhering to a predefined ratio. It operates by first identifying all files 

within the subfolders of the base directory, shuffling them to ensure randomness, and then dividing 

them according to the specified validation-to-training ratio.  

After the split, the files are relocated to new 'train' and 'val' directories, which mirror the structure 

of the original base directory. 

3.1.10 Augmenter 

During this stage, the function utilizes image augmentation techniques on each image in the 

subfolders, thereby expanding the training dataset. The modifications include operations such as 

rotation, flipping, zooming, distortion, brightness adjustment, and contrast enhancement. Initially, 

the function identifies the maximum number of images in any subfolder to establish a benchmark 

for augmentation across all subfolders, ensuring dataset balance. It then iterates through each 

subfolder, applying a calculated number of augmentation operations to each image. This 

calculation is based on the initial image count in that subfolder relative to the subfolder with the 

most images. This relative scaling of augmentation ensures that subfolders with fewer images 

receive more augmented versions to proportionally match the larger ones. 

3.1.11 Submapper 

After applying the augmentation, all the augmented photos will be placed inside an output folder. 

To relocate these photos to their original folders alongside their original counterparts, the 

Submapper function must be called again to refresh the list of subfolder directories. 
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3.1.12 Mover 

After refreshing the list, it is possible to run the Mover function, which will merge the partial 

directories of the output folders with their parent folders, facilitating the transfer. 

3.1.13 EFD 

In the Empty Folders Deleter (EFD) step of the script, the function is utilized to identify and 

remove any subfolders that do not contain any files or subdirectories. This function is crucial for 

maintaining an efficient and clutter-free file system, particularly after data has been moved or 

reorganized, which can often leave behind empty directories. It operates by traversing the directory 

tree from the innermost to the outermost directories (using a depth-first search approach), checking 

each folder for its contents. If a folder is found to be empty, it is immediately removed from the 

file system. 

The augmentation should be run on the 'train' and 'val' folders individually, which means that all 

the previous four steps (Augmenter, Submapper, Mover, EFD) must be run twice. 

3.1.14  Comparer 

This function is designed to effectively synchronize directory structures between two specified 

directories. This synchronization is crucial for maintaining consistency and alignment, especially 

in environments where data is dispersed across multiple locations, such as training and validation 

datasets for machine learning models. The function operates by initially listing all subfolders in 

both directories. It then identifies and removes any subfolders that lack a corresponding 

counterpart in the other directory, ensuring each location mirrors the other accurately. 

The "Linearoch" script represents a notable advancement in the mechanization of data processing 

for machine learning applications. This tool improves the efficiency and efficacy of data 

preparation by organizing the workflow for complicated data structures. It also offers a level of 

adaptability that was not possible before. Linearoch facilitates the easy integration of new 

components or projects into the machine-learning process. Users only need to place their 

photographs in the specified directories, and Linearoch takes care of the rest, including organizing 

and purifying the data, as well as executing advanced enhancements. This guarantees that the 

dataset is prepared and optimized for training, eliminating the necessity for manual intervention. 

Automation not only conserves significant time and resources but also enables the expansion of 

machine learning procedures and the exploration of new datasets with minimal preparation. 

Linearoch is an exceptional tool in the field of artificial intelligence, offering a powerful solution 

for seamlessly integrating and preparing various forms of data for future AI projects or expansions. 

3.2 Tailored Approaches for Peak Performance in Image Classification 

Image classification has come a long way in the realm of artificial intelligence, playing a vital role 

in various industries. Thanks to the adoption of deep learning technologies, significant progress 

has been made, greatly improving accuracy and efficiency in practical applications. This progress 

has been made possible by the development of sophisticated tools and scripts that streamline the 

training and testing processes, enabling more effective implementations. In this thesis, I present a 

Python script specifically designed to optimize performance in image classification tasks. 
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Leveraging the powerful PyTorch library, this script offers a comprehensive set of tools that 

support every stage of the machine learning journey, from data preparation to model training and 

performance evaluation. 

The script's architecture is meticulously crafted to accommodate a flexible and adaptable 

workflow, catering to diverse project requirements and dataset intricacies. This flexibility is 

achieved through a user-friendly interface that allows for easy customization of the machine 

learning process. Starting with a robust argument parsing module, the script empowers users to 

define crucial training parameters, such as batch size, learning rate, and the number of epochs. 

These parameters can be fine-tuned to suit different training scenarios and objectives, offering the 

flexibility needed to optimize performance across various computing environments. 

Furthermore, the script provides users with the ability to choose from a range of model 

architectures. Options include simpler and more efficient models like ResNet18, as well as more 

complex and computationally demanding ones like ResNet50. This feature enables users to strike 

an optimal balance between computational load and model performance, taking into account 

available hardware resources and specific project requirements. Such configurability is essential 

for tailoring the system to deliver the best possible results within the constraints and objectives of 

each unique use case. 

A critical aspect of the script's effectiveness lies in its advanced data management system. It not 

only facilitates efficient loading and preprocessing of image data but also incorporates advanced 

techniques like data augmentation. Data augmentation plays a crucial role in enhancing the model's 

ability to generalize from training data to real-world scenarios, ensuring robustness in AI 

applications. Additionally, the script leverages mixed-precision training, utilizing PyTorch's 

autocast and GradScaler features. This approach optimizes GPU utilization and accelerates the 

training process without compromising the accuracy of the model. 

Moreover, the script adopts the F1 score as the primary metric for evaluating model performance. 

The F1 score, which combines precision and recall, is particularly well-suited for scenarios where 

a balanced measure of model effectiveness is essential, such as datasets with imbalanced classes. 

By considering both precision and recall, this metric promotes a holistic assessment of the model's 

performance. 

The training process is further enriched by incorporating periodic checkpoints and extensive 

logging capabilities through TensorBoard. These features enable continuous monitoring and in-

depth analysis of the model's progress and performance, providing valuable insights to guide 

further optimizations. By visualizing training metrics in detail, TensorBoard helps identify trends 

and issues in real time, facilitating timely adjustments to the training process. 

In summary, the script developed as part of this thesis is not just a tool but the culmination of 

meticulous research, rigorous testing, and continuous refinement. It represents the most effective 

and innovative practices in the field of machine learning for image classification. The result is a 

highly adaptable, efficient, and powerful methodology that significantly enhances the capabilities 

of image classification systems. It demonstrates the profound impact that tailored, cutting-edge 

approaches can have on the advancement of artificial intelligence. 
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4 Results 

In this section of the thesis, we dive into the practical evaluation of the "Tailored Approaches for 

Peak Performance in Image Classification" script. Our main focus is to understand how different 

configurations and methodologies affect the effectiveness and efficiency of the image 

classification process. The experiments were carefully designed to systematically test the influence 

of various parameters. These parameters include factors like the size of the dataset, the dimensions 

of the images, the type of model used, when to perform augmentation, how to group the classes, 

whether to include padding and how much data augmentation to apply. Each of these factors plays 

a critical role in optimizing the performance and accuracy of the machine learning models that 

were used. 

The methodological approach employed in the experiments focused on systematically identifying 

optimal settings and methods to enhance the training and prediction accuracy of the model. Several 

factors were investigated, including the size of the dataset and image dimensions, the selection of 

different model architectures (ResNet18 and ResNet50), the timing of image augmentation (before 

or after dataset splitting), the inclusion of padding in images, and the extent of augmentation. These 

choices were made to improve the robustness and accuracy of the classification models by refining 

the training process, reducing overfitting, and enhancing generalization capabilities. The detailed 

results from these experiments provide insights into the best configurations and methodologies for 

achieving high performance in image classification tasks, validating the effectiveness of the 

approach and offering practical guidance for configuring image classification systems. 

Building upon the foundational methodologies we discussed earlier, the next section takes a deep 

dive into a careful evaluation of specific configuration parameters that are crucial for optimizing 

image classification models. Through this thorough analysis, we aim to shed light on the subtle yet 

significant influence of each variable, including factors like the amount of data available, the size 

and dimensions of the images, the choice of neural network architecture, and the preprocessing 

techniques applied. Our objective is to methodically measure the impact of these parameters on 

both the effectiveness and efficiency of the models. By doing so, we establish a solid empirical 

basis that can guide strategic decision-making when it comes to deploying image classification 

systems.  

4.1 Systematic Exploration of Configuration Parameters Impacting Image Classification 

Efficacy 

This section conducts a detailed examination of key configuration variables influencing the 

performance of image classification models. 

4.1.1 Data Size 

When examining the impact of data size on the performance of image classification models, a 

trend emerges where increased dataset volume correlates with enhanced model accuracy and 

generalization capability. The dataset of 4000 images, while showing substantial improvement 

over training epochs, reached a plateau in validation accuracy at 88% (Fig. 21). This plateau 

suggests a limitation in the model's ability to learn further from the available data. Real-world 

application of this model yielded a correct classification rate of approximately 13.3%, a value that  
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represents an average derived from observed performance on different test samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Expanding the dataset to 7000 images resulted in a notable increase in validation accuracy, 

achieving a peak of 92% (Fig. 22). This improvement in the model's validation performance 

translated into a higher correct classification rate, averaging 27.55% when tested on independent 

samples. The increased data volume provides the model with a richer set of features and examples 

to learn from, thereby improving its predictive accuracy. 

        Fig. 22 Model performance (7000 images). 

 

        Fig. 21 Model performance (4000 images). 
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The dataset comprising 10000 images further underscored this relationship. The model maintained 

a high validation accuracy of 92% (Fig. 23), consistent with the smaller 7000 image dataset. 

However, the correct classification rate on new samples significantly increased, averaging 39.5%. 

This notable increase implies that the additional data points contributed to a more robust 

representation of the underlying patterns within the image classes, allowing the model to better 

generalize and thus perform more effectively on unseen data. 

The consistency of high validation accuracy across the larger datasets indicates that the models 

have adequately learned the distinguishing features of each class. However, the varying correct 

classification rates point to the fact that accuracy on a validation set within the same distribution 

as the training set may not fully represent a model's performance in real-world scenarios, where 

the data may deviate from the training distribution. These findings emphasize the importance of 

not only training with ample data but also ensuring diversity within the dataset to bridge the gap 

between validation performance and practical applicability (Fig. 24). 

The relationship between data size and model performance is indeed not strictly linear, and this 

phenomenon is evident in the progression of real-world classification rates across the models 

trained on datasets of 4000, 7000, and 10000 photos. As the amount of data increases, there is an 

initial surge in performance; however, this rate of improvement begins to taper off, indicating a 

point of diminishing returns. This implies that each additional image contributes less to the model's 

ability to generalize as the dataset grows larger. When examining the transition from a dataset of 

4000 to 7000 images, the increase in correct classification rates is quite pronounced. Yet, the 

subsequent increase from 7000 to 10000 images, while still leading to better performance, does 

not yield as significant an improvement as the previous increment. This suggests the model is 

approaching a saturation point where additional data has a progressively smaller impact on 

performance. 

Fig.23 Model performance (10000 images). 
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The saturation point is influenced by several factors, such as the inherent complexity of the image 

data and the diversity encapsulated within the dataset. Complex images containing intricate 

patterns or subtle variations require more data to capture all the nuances necessary for accurate 

classification. Conversely, datasets with a high degree of diversity in terms of classes, 

backgrounds, lighting conditions, and perspectives offer a broader range of features for the model 

to learn from, which can prolong the linear portion of the performance curve before plateauing. 

It's also important to consider that as datasets grow, they may include more redundant or less 

informative images, which have a lesser effect on enhancing the model's robustness. Identifying 

the optimal dataset size thus becomes a balance between acquiring sufficient data to capture the 

diversity of the problem space and avoiding unnecessary data that does not contribute to model 

improvement. This balance is crucial for efficient model training, ensuring resources are not 

expended on processing data that yields minimal returns in performance enhancement. 

4.1.2 Model Type 

Comparing the ResNet18 and ResNet50 models provides insight into how different architectures 

perform with varying dataset sizes. On a dataset of 7000 photos, ResNet18 achieved a peak 

validation accuracy of 89% by the end of the training epochs (Fig. 25). When deployed in real-

world scenarios, this model demonstrated an average correct classification rate of 27% across 

different sample sets. 

On the same dataset, ResNet50 showed a slightly lower peak validation accuracy of 86% (Fig. 26). 

However, in practical applications, it managed to yield a higher correct classification rate, ranging 

from 23.4% to 31.7%, which indicates that the increased complexity of the architecture may 

provide better generalizability under certain conditions. 

 

Fig. 24 Real Accuracy. 

 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the 10000-photo dataset, the pattern continues. ResNet18 shows strong learning, reaching a 

validation accuracy of 93% with real-world classification rates between 32% and 48%. ResNet50 

also peaks at a 90% validation accuracy but with a real-world performance ranging from 31% to 

Fig. 26 ResNet-50 trained on 7000 images. 

Fig. 25 ResNet-18 trained on 7000 images. 
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47% (Fig. 27). These findings highlight that ResNet50 does not always outperform ResNet18 

significantly despite its increased complexity. 

 

 

In conclusion, the choice of model architecture should be driven by the specific requirements of 

the task and the computational resources at hand. While ResNet50 may have a higher potential for 

learning complex features, ResNet18 provides a computationally efficient alternative without 

compromising much on performance, proving to be a suitable choice for datasets of this size. These 

insights into the behavior of different architectures are instrumental in guiding the selection 

process for future image classification tasks. 

4.1.3 Image Size 

The impact of image size on the effectiveness of convolutional neural network models, specifically 

ResNet18 and ResNet50, is a topic of significant interest in the field of image classification. By 

comparing the classification rates of two different image resolutions (224,224) and (299,299), one 

can discern the influence of image resolution on model performance. 

For ResNet18, the model designed to handle (224,224) images showed a correct classification rate 

of 30% on sample 1 and 43% on sample 2. When the image size was increased to (299,299), which 

offers more pixel data and potentially more detailed features for the model to learn, the correct 

classification rate improved to 32% for sample 1 and 48% for sample 2. This improvement 

suggests that the additional resolution can be beneficial, possibly due to the model's ability to 

discern finer details that contribute to the accuracy of classification (Fig. 28). 

Similarly, the ResNet50 model experienced a gain in performance with the larger image size. For 

sample 1, the classification rate increased from 28% with (224,224) images to 31% with (299,299) 

images. For sample 2, the increase was from 39% to 47%. These results align with those observed 

Fig. 27 ResNet-18 and ResNet-50 trained on 10000 images. 
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for ResNet18, reinforcing the notion that higher image resolutions can enhance model 

performance. 

 

 

It is important to note that while higher resolutions generally lead to better classification rates, the 

increase is not overly dramatic. This may indicate that beyond a certain resolution, the added detail 

does not significantly contribute to model performance, particularly if the model is initially 

designed for a lower resolution. Moreover, the computational cost of processing higher-resolution 

images is substantially greater, which must be weighed against the incremental gains in accuracy. 

In summary, while larger image sizes can provide a performance boost, the trade-off between 

improved accuracy and increased computational demand must be carefully considered. For 

applications where fine-grained detail is crucial for accurate classification, higher resolutions may 

be justified. However, for more general purposes, the standard (224,224) size might offer a more 

balanced approach, especially when resource optimization is a priority. 

4.1.4 Augmentation Timing 

The sequence of augmentation and dataset splitting plays a pivotal role in the training of neural 

networks. Augmentation before splitting can inflate validation accuracy due to the augmented 

images in the training set resembling those in the validation set, creating an overestimation of the 

model's ability to generalize (Fig. 29). On the other hand, augmentation after splitting ensures that 

the validation set remains a more accurate gauge of real-world performance, as it better simulates 

the introduction of novel images that the model has not encountered during training. 

In the given experiment, applying augmentation after the split presents a more reliable progression 

of validation accuracy, starting from a high of 40% and then showing variation, with the highest 

accuracy plateauing around 76% (Fig. 30). This variance and the lower peak suggest that the model 

is learning from a more diverse and less overlapping dataset, which can result in a better measure 

of true generalizability. 

Fig. 28 ResNet-18 (224,224) and ResNet-50 (299,299). 
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The initial higher validation accuracy when augmenting before splitting is potentially misleading 

due to the similarity between training and validation images. This could lead to the false conclusion 

that the model is performing well on unseen data when, in reality, it has learned to recognize the 

augmented features that appear in both sets. 

The recommendation from these findings is to split the dataset before augmentation. This practice 

allows for a more honest assessment of a model's performance, preventing information leakage 

between training and validation datasets and ensuring that the validation set acts as a stand-in for 

entirely new data. Thus, augmentation after splitting contributes to building a model that 

generalizes well to unseen images, which is a critical requirement for real-world applications. 

Fig. 29 Augmentation before splitting. 

 

Fig. 30 Augmentation after splitting. 
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4.1.5 Padding inclusion 

The adaptation of image preprocessing strategies, specifically the application of padding during 

resizing, plays a crucial role in aligning the dataset with the architectural requisites of 

Convolutional Neural Networks (CNNs) such as ResNet18 and ResNet50. This section delves into 

the impact of padding on image classification accuracy by comparing various padding approaches 

against resizing that maintains the original aspect ratio without padding. 

4.1.5.1 Analysis of ResNet18 Trained on 4000 Images 

4.1.5.1.1 Aspect Ratio Preserved without Padding (348x232) 

This method directly resizes images to fit one dimension of the expected input size while 

preserving the original aspect ratio, leading to non-square dimensions. Despite the preservation of 

natural image proportions, this approach results in the lowest performance, with validation 

accuracy peaking at 83% and significant fluctuations in loss across epochs (Fig. 31), suggesting 

instability and inefficiency in model learning with a real-world accuracy of only 3.5% on a scanned 

sample. 

 

 

4.1.5.1.2 Aspect Ratio Preserved with White Padding (224x224) 

By resizing images to 224x224 pixels and filling the excess space with white padding to maintain 

the aspect ratio, there is a notable improvement in model performance (Fig. 32). This method 

stabilizes the validation accuracy, achieving a consistent upper range of 88% toward later epochs. 

The white padding minimizes distraction, allowing CNN to better focus on the informative parts 

of the image, thereby enhancing the learning process. 

 

Fig. 31 ResNet-18 Without Padding. 
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4.1.5.2 Additional Observations from ResNet50 Trained on 10000 Images 

4.1.5.2.1 ResNet50 without Padding, Direct Resizing to Square (299x299) 

When images are resized directly to 299x299 pixels to meet the model's input specification without 

applying padding, the model achieves an 89% accuracy. This approach aligns with the architectural 

design of the network, supporting efficient training and high accuracy without the need for 

additional preprocessing strategies (Fig. 33). 

 

 

Fig. 32 ResNet-18 With Padding. 

 

Fig. 33 ResNet-50 Without Padding. 
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4.1.5.2.2 ResNet50 with White Padding (299x299) 

 Incorporating white padding at this dimension further illustrates the effectiveness of this 

preprocessing method, which is particularly evident in the stability of model performance across 

different training scenarios and datasets. The white background ensures that all images conform 

uniformly to the network's expectations, facilitating better generalization and robustness in model 

predictions across diverse data samples. 

The comparison reveals that while maintaining the original aspect ratio without padding leads to 

poorer model performance due to the introduction of potentially misleading spatial configurations, 

the use of white padding under the same conditions enhances performance. This outcome 

underscores the importance of considering both the model architecture and the characteristics of 

the input data when designing preprocessing pipelines. The consistent application of suitable 

padding not only aids in achieving higher accuracy but also ensures the stability of the model 

across different epochs and datasets. Additionally, resizing the image to a square shape without 

padding (299x299) proved effective, demonstrating that this approach can adapt well to the 

model's requirements, further enhancing the processing efficacy for CNNs. 

The training progression showed initial high losses with gradual improvements in accuracy and 

validation scores as the epochs advanced. This trajectory indicates that while the model could adapt 

to the improperly scaled inputs, its efficiency was hampered, likely due to the distorted input data. 

With white padding (224x224), the model displayed a more stable and consistent improvement 

across epochs, with lower initial losses and higher accuracy, reflecting the benefits of this 

preprocessing strategy. 

For ResNet-50 with square resizing (299x299), the model training showed robust performance 

across metrics, with validation accuracies reaching up to 89.92%, highlighting that for certain 

architectures, directly resizing to the expected input dimensions without padding can be effective, 

particularly when the resizing does not severely distort the image content. 

These experiments elucidate the critical impact of image preprocessing techniques on the 

performance of convolutional neural networks. They demonstrate that while padding can 

significantly influence model training and performance, the choice of padding strategy—whether 

color-consistent or random—can also play a crucial role. Moreover, direct resizing to square 

dimensions can sometimes be just as effective, depending on the model and dataset characteristics, 

suggesting a need for tailored preprocessing approaches based on specific model requirements and 

data attributes. 

4.1.6 Extent of Augmentation 

The experimental findings clearly illustrate the profound impact of varying levels of augmentation 

on model training and real-world performance. The augmentation-to-original photo ratio was 

systematically increased from 0 to 6, providing a detailed view of how model robustness and 

generalization to new data can be influenced by image diversity within the training set. 



50 
 

4.1.6.1 No Augmentation (0:1 ratio) 

 This configuration yielded a maximum training accuracy of 89.28% and a validation accuracy that 

reached up to 78.95% (Fig. 34). In real-world applications, the model only achieved a 12% 

accuracy, highlighting a significant overfitting problem due to the lack of variety in the training 

examples. 

 

 

4.1.6.2 Mild Augmentation (1:1 ratio) 

 Introducing an equal number of original and augmented images slightly improved the real-world 

accuracy to 24%. This setup demonstrates the initial benefits of augmentation, reducing overfitting 

by providing varied perspectives and background modifications to the model during training. 

 

4.1.6.3 Moderate Augmentation (2:1 and 3:1 ratios) 

 With a doubling and tripling of augmented images compared to the original ones, real-world 

accuracy improved to 33% and 40%, respectively. These configurations indicate a better 

Fig. 34 No Augmentation (0:1 ratio). 

 

Fig. 35 Mild Augmentation (1:1 ratio). 
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generalization capability, likely due to the model's increased exposure to diverse training data, 

which better simulate real-world scenarios. 

 

 

 

 

4.1.6.4 High Augmentation (4:1, 5:1, and 6:1 ratios) 

 Continuing to increase the ratio of augmented images shows a more nuanced result. At a 4:1 ratio, 

real-world accuracy peaks at 36%, but further increasing the augmentation does not yield 

proportionate gains, with real-world accuracies at 42% and 41% for 5:1 and 6:1 ratios, respectively. 

This plateau suggests that beyond a certain point, additional augmentation may not provide 

significant benefits and could potentially introduce noise or irrelevant variations that the model 

must learn to ignore. 

 

Fig. 36 Moderate Augmentation (2:1 ratio). 

 

Fig. 37 Moderate Augmentation (3:1 ratio). 
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Fig. 38 High Augmentation (4:1 ratio). 

 

Fig. 39 High Augmentation (5:1 ratio). 

 

Fig. 40 High Augmentation (6:1 ratio). 
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Fig. 41 Real-World application. 

These results underscore the critical balance required in selecting the extent of augmentation. 

While augmentation is crucial for enhancing model robustness and accuracy, too much can lead to 

diminishing returns or even detrimental effects on the model’s ability to generalize from training 

to real-world application. Effective augmentation strategies must, therefore be tailored to the 

specific characteristics of the dataset and the capacity of the model to handle complex variations 

within input data. 

4.1.7 Batch Size and Epoch Number 

The examination of how batch size influences model training for image classification has 

uncovered subtle impacts on performance metrics in various setups. Here is a comprehensive 

summary of the observed trends and their implications. 

4.1.7.1 Batch Size 16 

In the case of using a batch size of 16, the model starts with a lower proportion of correct 

classifications, suggesting an initial struggle, but shows a gradual improvement over the epochs, 

achieving its highest number of true classifications by the tenth epoch (Fig. 42). This trend suggests 

that smaller batch sizes may enable more frequent updates to the model’s weights, allowing for 

finer adjustments and better navigation through the loss landscape, which potentially enhances 

steady learning improvements. 
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Fig. 42 Models performance (Batch Size = 16). 

4.1.7.2 Batch Size 32 

For the batch size of 32, the model kicks off with a notably high accuracy, but the performance 

shows significant fluctuations throughout the training epochs (Fig. 43). Despite a strong start, this 

variability might indicate that while the batch size allows for relatively stable updates, it may not 

be as effective at capturing fine-grained variations in the data, leading to inconsistent performance 

across epochs. 

 

 

 

 

 

 

 

 

 

 

           Fig. 43 Models performance (Batch Size =32). 
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4.1.7.3 Batch Size 64 

Using a batch size of 64 exhibits a robust initial performance with a higher number of correct 

classifications early on but also displays fluctuations and a decline in performance as training 

progresses (Fig. 44). This pattern suggests that larger batch sizes may complicate the optimization 

process, possibly due to slower convergence rates or difficulties in escaping local minima, which 

can result in overfitting or insufficient generalization capabilities, particularly highlighted by the 

later decrease in performance. 

 

Fig. 44 Models performance (Batch Size = 64). 

Each of these observations underscores the nuanced impact of batch size on the dynamics of 

training deep learning models for image classification, with smaller batches generally favoring 

more detailed learning and larger batches potentially offering quicker initial learning but at the risk 

of instability and inefficiencies in long-term training outcomes. 

4.1.8 Comparing Model Architectures 

In my project, which involves tackling the complexities of classifying a varied and imbalanced 

dataset, ResNet architectures—specifically ResNet-18 and ResNet-50—have been identified as 

highly suitable. These models excel in efficiently learning from complex and hierarchical data 

structures that often characterize imbalanced datasets. The incorporation of skip connections 

within these models mitigates the problem of vanishing gradients, which is prevalent in deep neural 

networks, particularly when training on datasets with uneven class representation. 

The design of ResNet models facilitates effective learning even when data points per class are 

limited compared to other deep networks. This capability is critical in scenarios like mine, where 

data distribution across classes is not uniform. ResNet's skip connections simplify the flow of 

gradients during training, enabling the construction of deeper network architectures without the 

typical training difficulties associated with such depth. This characteristic allows for robust 
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performance, even with a relatively small number of images in some classes, by extracting 

meaningful features that aid in the classification across diverse classes. 

ResNet also offers considerable flexibility and scalability, which are advantageous for my project 

as it evolves. Starting with a simpler model such as ResNet-18 for preliminary experiments and 

advancing to ResNet-50 as the dataset expands or becomes more complex offers a practical 

approach to managing computational resources while achieving high accuracy. 

The profound feature extraction capabilities of ResNet prove beneficial for image classification 

tasks. Models like ResNet-50, capable of discerning intricate patterns and subtle differences 

between images, are essential for ensuring precise classification across multiple, diverse classes. 

This depth allows the model to perform effectively, even in situations where some classes are 

significantly underrepresented, thus supporting better generalization and reducing bias towards 

more frequently represented classes. 

ResNet's established track record in handling image classification tasks further underscores its 

suitability for this project. It has been extensively tested and validated in both academic and 

industrial environments, demonstrating high performance and reliability.  

The widespread adoption of ResNet in a variety of image-related applications highlights its 

robustness and the confidence that researchers and developers have in its capabilities. 

Overall, the combination of deep learning efficiency, robust feature extraction, model scalability, 

and ease of the implementation procces makes ResNet a compelling choice for this project. Its 

architecture is adept at handling the challenges posed by an imbalanced dataset, ensuring that all 

classes are accurately represented and contributing to the overall effectiveness of the classification 

system. 

Table.1 Overall evalution 

  Model Accuracy 

  ResNet-18 ResNet-50 

  Training Validation Real-world Training Validation Real-world 

D
a

ta
 S

iz
e 4000 99.00% 87.00% 13.00% - - - 

7000 99.00% 89.00% 27.00% - - - 

10000 99.00% 91.00% 39.00% - - - 

Im
a

g
e 

S
iz

e 224 99.00% 92.00% 43.00% 99.00% 87.00% 39.00% 

299 99.00% 93.00% 48.00% 99.00% 88.00% 47.00% 

P
a
d

d
in

g
 

with 99.00% 87.00% - - - - 

without 99.00% 81.00% - 99.00% 90.00% - 
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A
u

g
m

e
n

ta
ti

o
n

 

0:1 90.00% 80.00% 12.00% - - - 

1:1 93.00% 85.00% 24.00% - - - 

2:1 98.00% 84.00% 33.00% - - - 

3:1 99.00% 85.00% 40.00% - - - 

4:1 99.00% 90.00% 36.00% - - - 

5:1 99.00% 91.00% 42.00% - - - 

6:1 99.00% 92.00% 41.00% - - - 

B
a
tc

h
 S

iz
e 

B
at

ch
 S

iz
e 

1
6
 

Epoch 1 25/50 - - - 

Epoch 2 125/230 - - - 

Epoch 3 150/230 - - - 

Epoch 4 175/290 - - - 

Epoch 5 220/405 - - - 

Epoch 6 255/420 - - - 

Epoch 7 225/380 - - - 

Epoch 8 280/420 - - - 

Epoch 9 302/495 - - - 

Epoch 10 310/510 - - - 

B
at

ch
 S

iz
e 

3
2
 

Epoch 1 14/15 - - - 

Epoch 2 75/135 - - - 

Epoch 3 100/155 - - - 

Epoch 4 140/215 - - - 

Epoch 5 155/330 - - - 

Epoch 6 160/290 - - - 

Epoch 7 190/345 - - - 

Epoch 8 230/370 - - - 

Epoch 9 210/375 - - - 

Epoch 10 250/430 - - - 

B
at

ch
 S

iz
e 

6
4
 

Epoch 1 20/40 - - - 

Epoch 2 100/200 - - - 

Epoch 3 190/290 - - - 

Epoch 4 225/400 - - - 

Epoch 5 250/440 - - - 

Epoch 6 220/405 - - - 

Epoch 7 240/410 - - - 

Epoch 8 205/370 - - - 

Epoch 9 270/480 - - - 

Epoch 10 250/510 - - - 
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5 Conclusion 

The research undertaken in this thesis represents a significant stride in the field of automotive 

engineering, particularly in the enhancement of electric vehicle (EV) technologies through the 

development of a Part Recognition Tool for eAxles. This tool, powered by sophisticated image 

recognition technology and artificial intelligence, automates the identification and categorization 

of eAxle components, thereby advancing the efficiency and accuracy of physical analyses in EV 

development. 

Central to the success of this initiative was the in-depth exploration and adaptation of ResNet 

architectures, which are renowned for their robust performance in handling complex and 

imbalanced datasets. The tailored AI model developed through this research demonstrated a 

promising initial real-world application accuracy of 55%. Strategies for enhancing this accuracy, 

including the augmentation of training datasets and the optimization of augmentation techniques, 

were explored, with projections indicating gradual improvements in performance. 

Furthermore, the introduction of the "Linearoch" system played a pivotal role in the project by 

automating the preparation and organization of extensive datasets. Linearoch significantly 

streamlined the data management process, reducing the potential for human error and enhancing 

the overall efficiency of the machine learning workflow. This system not only supported the 

effective training of the Part Recognition Tool but also demonstrated the potential for broader 

applications in managing data for AI-driven projects. 

The integration of the Part Recognition Tool into the automotive industry is anticipated to 

revolutionize the development process for eAxles, reducing time-to-market and production costs 

while improving the quality of the output. The practical implications of this tool extend beyond 

academic interest, offering substantial benefits to industry practitioners by enhancing the precision 

of component analyses and supporting faster design iterations. 

This thesis not only contributes to the academic and practical knowledge in the field of AI 

applications in mechanical engineering but also sets a precedent for the future integration of AI 

tools in automotive engineering and other industrial applications. The research highlighted the 

importance of maintaining rigorous standards of accuracy and reliability in the deployment of AI 

tools, ensuring that these technologies meet the complex demands of real-world applications. 

In conclusion, the development of the Part Recognition Tool for eAxles represents a significant 

advancement in the application of artificial intelligence in the automotive sector. The successful 

implementation of this tool could serve as a model for similar innovations across different sectors, 

potentially leading to more widespread adoption of AI in complex industrial analyses. Future 

research will focus on refining this tool and exploring other AI models that could further enhance 

its capabilities, continuing to push the boundaries of what is possible in the automation of vehicle 

system analyses. 
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6 Summary 

In the landscape of automotive engineering, the emergence of electric vehicles (EVs) represents a 

significant technological and environmental milestone. Central to the advancement of EV 

technology is the development and optimization of electric axles (eAxles), which integrate key 

drivetrain components into compact, efficient units. This thesis presented the development of an 

advanced Part Recognition Tool designed to enhance the physical analysis of eAxles through the 

utilization of sophisticated image recognition technologies powered by artificial intelligence (AI). 

The tool automates the identification and categorization of eAxle components, facilitating more 

accurate and efficient developmental analyses. 

The research included a detailed review of existing AI models and image recognition techniques, 

with a focus on ResNet architectures known for their deep learning capabilities and robust 

performance on complex datasets. This review provided foundational knowledge for the 

development of a specialized AI tool tailored for the intricacies of eAxle parts, highlighting the 

importance of selecting appropriate models that can handle the specific challenges posed by the 

unique geometries and configurations of eAxle components. 

A critical component of this thesis was the development and implementation of the "Linearoch" 

system, a sophisticated script designed to systematize and streamline the data preparation process 

for machine learning. Linearoch automates the organization, preprocessing, and management of 

complex data structures, significantly enhancing the efficiency of preparing large and 

heterogeneous datasets. By automating tasks such as reorganizing folder structures, renaming files 

while preserving hierarchical relationships, and handling various types of image files, Linearoch 

minimizes human error and reduces the time and effort typically associated with manual data 

preparation. Its core functionality transforms unstructured or semi-structured data repositories into 

well-organized formats that are readily accessible and optimized for further processing and 

analysis. This structured systematization is essential for improving the performance of machine 

learning models, ensuring that the data provided to these models is of high quality, well-annotated, 

and consistently formatted. The introduction of Linearoch in this research not only supported the 

effective training of the Part Recognition Tool but also set a precedent for future applications, 

offering a robust framework for data management in complex AI-driven projects. 

The creation of a comprehensive dataset specifically designed for the training and testing of the 

AI model was detailed. This dataset included a wide array of eAxle images, meticulously annotated 

to ensure precise model learning. The complexity and variety embedded within this dataset aimed 

to mirror real-world conditions, thus preparing the model to accurately identify and categorize 

eAxle parts across different makes and models of eAxles.  

The core of the thesis involved the development of the AI model using the ResNet architectures. 

Modifications and optimizations were applied to these architectures to better suit the specific needs 

of eAxle analysis. The performance of the AI model was rigorously evaluated through a series of 
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tests designed to assess its accuracy, reliability, and scalability, validating the effectiveness of the 

tool in practical applications. 

In real-world applications, the Part Recognition Tool achieved an initial accuracy of 55%. Several 

strategies to enhance this accuracy were detailed, such as increasing the size of the training dataset, 

optimizing the number of augmentations, and continuously refining the AI model based on 

ongoing testing and feedback. These enhancements are expected to gradually improve the tool's 

accuracy, making it even more effective in practical settings. 

Moreover, the thesis explored the practical implications of the Part Recognition Tool within the 

automotive industry. The integration of this tool into the eAxle development process is projected 

to significantly enhance the efficiency and accuracy of part analysis, which could lead to faster 

design iterations, reduced costs, and improved overall vehicle performance. The potential industry 

impact of such a tool underscores its value, not only as an academic endeavor but also as a 

significant technological advancement. 

The thesis concluded by summarizing the research outcomes and reiterating the potential of the 

Part Recognition Tool to transform the eAxle development process. It also outlined future research 

directions, including the exploration of other AI models that could further enhance the capabilities 

of the tool. The conclusion reaffirmed the significance of the tool in advancing not only the field 

of automotive engineering but also the broader application of AI in complex industrial analyses. 

This comprehensive summary encapsulates the development, implementation, and evaluation of a 

Part Recognition Tool for eAxles, highlighting its importance and potential impact on the 

automotive industry. The integration of advanced AI technologies within the automotive sector 

promises to enhance the precision and efficiency of vehicle development, paving the way for more 

innovative and sustainable vehicle technologies. 
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