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1. INTRODUCTION AND OBJECTIVES 

 

From its obscure origins in the highlands of Ethiopia, the coffee plant has garnered 

international admiration like no other. Indeed, coffee remains the most traded plant-based 

commodity internationally, with a global production output of 175 million 60 kg bags in 2020 

(International Coffee Organisation, 2024). Moreover, it holds the status of the most consumed 

beverage after water (United States Department of Agriculture, 2023). Given its significance, 

assuring quality along the coffee value chain is imperative. In this regard, quality assurance for 

various aspects from cultivation through processing to the final brew are well established (Vieira, 

2008a). 

The principal target of quality assurance is consumers who are drawn to the beverage for its 

unique sensory attributes and cognitive effects (Samoggia and Riedel, 2018). One such sensory  

attribute is brew strength (Frost et al., 2020). The term describes all components found in the 

brew which influence the sweetness, bitterness and several sensory perceptions elicited by the 

specific proportions of the chemical constituents in the brew (Batali et al., 2020). Brew strength 

is quantified as the mass concentration of all dissolved components, otherwise known as total 

dissolved solids (TDS) (Sunarharum et al., 2014). TDS is applied in conjunction with extraction 

yield (EY), which is defined as the ratio of mass extracted from coffee to the weight of the coffee 

grounds used (Sunarharum et al., 2014). 

According to mass conservation arguments, there is a linear correlation between the EY and TDS, 

with the slope as the brew ratio (Cordoba et al., 2020; Ristenpart and Kuhl, 2015). This relation 

was first developed by the seminal work of Lockart (1957) and forms the basis of Brewing Control 

Charts used by coffee brewers worldwide. The chart proposes that the ideal coffee brew has TDS 

and EY in the ranges of 0.79 - 1.25% and 18 - 22% respectively (Lingle, 2011; Lockhart, 1957; 

Ristenpart and Kuhl, 2015). Despite recent revisions and expansion of the charts to accommodate 

modern sensory preferences, it remains an integral part in assessing the quality of coffee brew 

(Batali et al., 2020; Frost et al., 2020).  
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As a mass concentration, estimating coffee TDS requires the preparation of a brew from which an 

aliquot is either oven-dried or subjected to refractive-index-based estimations with appropriate 

correction factors (Kimball, 1991; Petracco, 2001b; Wang and Lim, 2023). Moreover, TDS is 

strongly influenced by brewing methods and associated parameters such as percolation time, 

temperature, water quality and quantity, and pressure among others (Batali et al., 2020; Cordoba 

et al., 2020; Frost et al., 2020; Lingle, 2011). This multitude of potential variables often translates 

into differences in TDS estimated from the same coffee sample (Belitz et al., 2009; Petracco, 

2001b). It is, therefore, necessary to explore non-destructive secondary analytical methods of 

estimating TDS as this will yield lesser variations and also allow for routine application with 

minimal sample preparation (Reh, 2008).  

Near infrared spectroscopy (NIRS) stands out as a viable alternative to explore in this regard. It is 

based on the unique interactions of electromagnetic radiation in the NIR range (12500-4000 cm -

1) with matter (Sandorfy et al., 2006). The interaction manifests as absorbance of frequencies of 

polychromatic light that corresponds to the molecular vibrational transition of the material (Ozaki 

et al., 2006). The chemical and physical characteristics of the materials are thus deduced from 

the resulting spectra (Sandorfy et al., 2006). Chemometric methods are required when applying 

NIRS to complex sample matrices (Ribeiro et al., 2010) 

Indeed, NIR spectroscopy has been extensively explored in the coffee industry with applications 

ranging from the estimation of caffeine content of roasted beans (Zhang et al., 2013), 

discrimination of defective coffee beans (Craig et al., 2012), and predicting the sensory scores of 

roasted beans (Ribeiro et al., 2010).  

Thus, this study seeks to explore the feasibility of estimating the TDS of coffee samples from the 

NIR spectra of roasted coffee beans and brew prepared from the beans with two reference 

methods. The aims of the study were: 

1. Measure the TDS of coffee samples using two reference methods: oven-drying and Brix°- 

derived measurements. 

2. Collect the NIR spectra of roasted coffee bean and brew made from the beans 
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3. Investigate the relation between the two-reference methods to gain a deeper 

understanding on the potential effects on the calibration models. 

4. Build two calibration models from the two reference methods to predict reference TDS 

measurement. 
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2. LITERATURE REVIEW 

 

2.1. Botanical classification 

The Coffea genus comprises over 100 species (Davis et al., 2006). Coffee may grow as a 

perennial shrub or tree depending on the species (Rena et al., 1987). In the case of arabica coffee 

(C. arabica L.), it typically has a single main trunk above ground while robusta coffee (C. canephora 

Pierre ex A. Froehner) grows with multiple trunks (Alves et al., 2017). These two species represent 

about 98% of the coffee market (Alves et al., 2011). The difference in morphology extends to their 

mature fruits. In arabica coffee, mature fruits known as "berries" can be either red or yellow, and 

Robusta plants exhibit a wider range of hues in their fruits (Herrera and Lambot, 2017). The shape 

of the fruit, ranging from round to oblong, varies depending on the Coffea species. Moreover, the 

size of both the fruit and its endosperm (referred to as the "bean") is influenced by the specific 

cultivar, as well as cultivation conditions (Herrera and Lambot, 2017). Typically, each fruit yields 

two beans. The bean itself contains proteins, caffeine, oils, sugars, dextrin, chlorogenic acid, and 

various other substances that contribute to the characteristics of the resulting beverage (Pinheiro 

et al., 2021).  

 

2.2. Coffee Production  

The compositional differences of the two varieties makes them suitable for various 

applications. Coffea arabica L. is the most cultivated constituting about 65% to 75% of global 

coffee production (International Coffee Organisation, 2024). It is known for its superior taste 

qualities but contains lower levels of total soluble solids (Sera, 2001). C. canephora Pierre, on the 

other hand constitutes 10% to 25% of global coffee production. While Robusta is perceived as 

having inferior taste characteristics relative to Arabica, it contains double the caffeine content and 

yields higher levels of extractable solids (Ferrão, 2009). Furthermore, Robusta exhibits greater 

resistance to diseases such as leaf rust (Helimeia vastatrix) and is employed to increase the 

quantity of coffee drinks like espresso coffee and instant coffee (Alves et al., 2011; Manzocco et 

al., 2019).  
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2.3. Cultivation and processing 

The quality of cup coffee predominantly hinges on the physical and chemical attributes of 

green coffee, shaped by a blend of three key categories: environmental factors, genetic factors, 

and agricultural practices (Herrera and Lambot, 2017). Coffee harvesting practices has a strong 

influence on the quality of beverage obtained (Vieira, 2008a). It is recommended to limit the 

number of unripe cherries to no more than 20% due the negative impacts on brew quality (Vieira, 

2008a). This is because, at peak ripeness, there is increased level of sugar and other elements 

that can enhance the desirable qualities like flavour, aroma, sweetness, acidity, body and balance 

in the beverage post roasting (Giomo, 2012).  

Following harvesting, berries undergo either dry or wet processing. In dry processing, 

debris and damaged berries are separated through flotation in washing channels (Vieira, 2008a). 

Subsequently, the berries are spread out on terraces and regularly turned until they uniformly 

dry under the sun (Giomo, 2012). Dehydration of coffee is essential for safeguarding the beans 

during storage, constituting a crucial phase in the post-harvest process aimed at achieving a high-

quality end product (Resende et al., 2011). The drying process reduces the moisture content of 

coffee beans from 60% to levels ranging between 11% and 13%, thereby mitigating the risks of 

oxidation as well as fungal and bacterial proliferation (Pinheiro et al., 2021). In the wet processing 

method, debris and some damaged berries are removed in washing channels. Mechanical 

removal of the outer layer and a portion of the berry's pulp occurs, and the remaining pulp is 

eliminated through fermentation and washing (Wintgens and Zamarripa C., 2004). Consequently, 

in this method, it's the coffee beans, not the berries, that are sun-dried (Ismayadi et al., 2005). 

Dried beans undergo additional processing such as hulling, polishing, cleaning, sorting by various 

criteria such as size, density, or colour, grading, as well as roasting and grinding (Santos et al., 

2009) Upon completion of drying, coffee can be stored either on the farm or in external facilities 

(Ribeiro et al., 2012) 
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2.4. Chemical composition of the green beans 

Green coffee consists of carbohydrates, nitrogen-containing compounds (primarily 

proteins, trigonelline, and caffeine), lipids, organic acids, and water. Virtually all components of 

green coffee serve as potential precursors for flavour and colour development (Baggenstoss et 

al., 2008). Among these constituents, sugars, proteins, free amino acids, trigonelline, and 

chlorogenic acids (CGA) stand out as the principal flavour precursors (Poisson et al., 2017). 

While the overall composition of Arabica and Robusta species is quite similar, their relative 

proportions vary significantly. Arabica coffees are distinguished by higher levels of carbohydrates 

(such as sucrose, mannans and oligosaccharides), trigonelline, lipids, organic acids (including 

citric, malic, and quinic acids), and 3-feruloyl-quinic acid (3-FQA) (De Maria et al., 1996). 

Conversely, Robusta coffees exhibit higher concentrations of caffeine, proteins, arabinogalactans, 

chlorogenic acids (except 3-FQA), total phosphate, ash (comprising calcium salts), and transition 

metals (such as Al, Cu, and Fe). These notable differences in composition play a pivotal role in 

shaping the distinct qualities and characteristics of roasted coffee (Poisson et al., 2017). 

 

2.4.1. Carbohydrates  

Carbohydrates account for approximately 40-65% of the dry weight of green coffee, 

comprising both water-soluble and water-insoluble carbohydrates (Martinez et al., 2018). The 

soluble polysaccharides and the insoluble fraction consist of polymers of arabinose, galactose, 

glucose, and mannose (Bradbury and Halliday, 1990). Furthermore, cellulose, galactomannan, 

and arabinogalactans collectively represent about 45% of the dry weight of coffee beans with the 

remaining portion composed of sucrose (3-8%) (Trugo, 1985). The soluble fraction of green coffee 

carbohydrates is believed to be the primary source of precursors for the development of coffee 

aroma, taste, and colour (De Maria et al., 1996; Nunes and Coimbra, 2001). These precursors 

readily engage in various reactions, evidenced by their rapid depletion in the early stages of 

roasting (Poisson et al., 2017). Water-soluble carbohydrates are categorized into two fractions: 

high molecular weight (HMW) and low molecular weight (LMW) fractions (De Maria et al., 1994).  
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HMW polysaccharides in green coffee mainly consist of galactomannans and arabinogalactans, 

with the latter constituting 14-19% of the dry matter (De Maria et al., 1994; Illy and Viani, 1995).  

The water-soluble low molecular weight (LMW) fraction contains significant flavour precursors 

such as free sugars (De Maria et al., 1994). While mono- and disaccharides are present in minor 

quantities, they play essential roles in aroma development through caramelization and Maillard 

reaction (Poisson et al., 2017). Sucrose, the predominant disaccharide constitutes approximately 

8% of Arabica green coffee and about half that amount in Robusta (3-6%) (Belitz et al., 2009). The 

higher sucrose content in Arabica has been suggested to contribute to its complex aroma and 

overall flavour (Farah, 2012).  

Oligosaccharides (such as stachyose and raffinose) and monosaccharides (including arabinose 

and glucose) are present in trace amounts in green coffee (De Maria et al., 1994). The insoluble 

portion comprises high molecular weight (HMW) polymeric components located in the dense cell 

wall complex of the bean and comprises mannans, hemicellulose, and cellulose, and more 

abundant in Arabica than in Robusta coffee (Belitz et al., 2009; Illy and Viani, 1995).  

 

2.4.2. Nitrogen-containing substances 

Nitrogen compounds, primarily proteins, constitute approximately 11-15% of the dry 

coffee material, with a total protein content of around 10% for both Arabica and Robusta green 

coffee (Poisson et al., 2017). Some proteins are bound to arabinogalactan, forming 

arabinogalactan proteins (AGPs) (Belitz et al., 2009). Moreover, free amino acids constitute less 

than 1% of green coffee, these include aspartic acid, glutamic acid, and asparagine among others 

(Wong et al., 2008). They play crucial roles as reaction partners in Maillard chemistry and Strecker 

degradation, generating numerous potent odorants (Wong et al., 2008). In addition to proteins 

and free amino acids, coffee contains the alkaloid caffeine, which is perhaps the most widely 

recognized and extensively studied alkaloid in plants (Poisson et al., 2017). Trigonelline is another 

important nitrogen-containing component. It is classified as an N-methyl betaine and can be 

found in arabica green beans at levels ranging from 0.6% to 1.3%, and in robusta green beans at 

levels from 0.3% to 0.9% (Macrae, 1985). 
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2.4.3. Lipids 

Lipids make up approximately 15-18% of Arabica and 8-12% of Robusta (Viani and 

Petracco, 2007). This lipid fraction consists of coffee wax and triglycerides, predominantly 

composed of linoleic acid (40-45%) and palmitic acid (25-35%) (Belitz et al., 2009). Additionally, 

diterpenes such as cafestol and kahweol, along with sterols in both free and esterified forms, 

contribute to the total lipid content (Viani and Petracco, 2007).  

2.4.4. Acids  

The acidic fraction in green coffee consists of both volatile and nonvolatile aliphatic and 

phenolic acids, collectively constituting 8% of the raw bean (Maier, 1993). Major nonvolatile acids 

include chlorogenic acid (CGA), malic acid, citric and quinic acid (Maier, 1993). Volatile acids, 

primarily formic and acetic acids, originate from the fermentation process during postharvest 

treatment but can also be formed through Maillard-type reactions during roasting (Davídek et al., 

2006; Viani and Petracco, 2007). 

CGA are a group of phenolic compounds formed from the esterification of hydroxycinnamic acids 

with quinic acid (Farah, 2012). Caffeoyl-quinic acid (CQA) constitutes about 80% of the total CGA 

(Farah, 2012). Among CGA, the 5-CQA isomer is the most abundant and is continuously degraded 

during roasting, followed by 4- and 3-CQA (Clifford et al., 2003; Farah et al., 2005). CGA serve as 

important precursors of bitter taste compounds but can also decompose into their constituents, 

quinic acid and hydroxycinnamic acid, which may further degrade into volatile and non-volatile 

phenolic compounds (Dorfner et al., 2003; Tressl et al., 1976). Reported levels of CGA in green 

coffee vary from 8% to 14.4% dry matter for Robusta and 3.4% to 4.8% for Arabica (Ky et al., 2001).  

2.4.5. Minerals 

As with most plant materials, potassium is the primary component in green coffee ash, 

constituting 1.1%, followed by calcium (0.2%) and magnesium (0.2%) (De Maria et al., 1994). The 

main anions are phosphate (0.2%) and sulphate (0.1%). Various other elements are present in 

small, trace amounts (Pinheiro et al., 2021). 
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2.5. Coffee roasting 

Coffee roasting is a unit operation that converts green beans into roast coffee. The process 

is aimed at achieving roasted coffee with the desired flavour profile, as well as imparting a dark 

colour and a brittle, porous texture suitable for grinding and extraction (Schenker and Rothgeb, 

2017). Throughout the roasting process, coffee beans are subjected to hot air, causing their 

temperature to rise thus triggering extensive chemical reactions, dehydration, and significant 

alterations in the microstructure (Schenker and Rothgeb, 2017).  

The process is carried out within the temperature ranges of 200-250°C for a roast time of 3 to 20 

minutes (Yeretzian et al., 2002). It is worth mentioning that the temperature at which roasting 

occurs is often a representation of the temperature of the convectional heat used and the bean 

surface in contact with the temperature probe (Schenker and Rothgeb, 2017). Consequently, the 

comparison of roasting temperatures across different systems is not straightforward. 

During the roasting process the coffee beans gradually change colour from green to and darker 

shades of brown (Yeretzian et al., 2002). The change in colour provides an objective basis to assess 

the degree of roasting. The colour is quantified with scales like the Agtron “Gourmet Scale” and 

the L*a*b colour space (Schenker and Rothgeb, 2017).  

Additional changes include expansion of the volume of the bean by over 50%, accompanied by 

one-fifth loss in mass due to moisture loss and the release of volatiles and carbon dioxide 

(Pinheiro et al., 2021). The continued increase in internal pressure ultimately yields fissures in the 

cell wall tissue, known as “crack” (Yeretzian et al., 2002). Moreover, the expansion coupled with 

dehydration and chemical reactions modifies the microstructure of the beans form dense to 

porous (Schenker, 1999). Consequently, the native cell structures are replaced with “hollow” cells 

which results in a bean with gas-filled void at its centre thus facilitation easy grinding (Schenker, 

1999). Moreover, the structural changes break up oil bodies and mobilize coffee oil to the surface 

of the beans aided by the built-up pressure (Schenker and Rothgeb, 2017).  

The early stages of roasting are characterised mainly by moisture loss (Yeretzian et al., 2002). 

Hence, dark roasted beans experience a higher rate of moisture and organic matter loss relative 

to light roasted beans (Schenker and Rothgeb, 2017). Furthermore, the line between the loses 
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across roasting degrees are blurred owing to natural fluctuations in the composition of green 

beans (Yeretzian et al., 2002). Thus, the similar beans roasted under the same parameters 

(temperature and time) may exhibit differences in composition (Schenker, 1999).  

Among the notable reaction that yield compounds of interest to coffee quality is; Maillard 

Reaction (which gives rise to melanoidins), the reaction of hydroxyamino acids undergoing 

decarboxylation and dimerization and the degradation of proteins, chlorogenic acid, and 

polysaccharides, among others (Moreira et al., 2012). The Maillard reaction produces various 

volatile compounds, including pyridines, pyrazines, dicarbonyls like diacetyl among many others 

(Dorfner et al., 2003).  Figure 1 depicts the various flavour precursors in coffee beans and their 

products. 

 

 

Figure 1.: Coffee flavour precursors (Yeretzian et al., 2002) 
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2.5.1. Effect of roasting on bean composition 

 

2.5.1.1. Carbohydrates  

Approximately 12-24% of polysaccharides are degraded in light-roasted coffee, increasing 

to 35-40% in dark-roasting (Bradbury, 2001). The degradation primarily involves the breakdown 

of arabinogalactan side chains into arabinose, while cellulose and mannans largely remain intact 

(Bradbury, 2001). While polysaccharides may not directly contribute to aroma formation during 

roasting, they influence relevant organoleptic properties of coffee brews, such as viscosity and 

mouthfeel (Redgwell et al., 2002).  

As observed with arabinogalactans, roasting also induces structural alterations in AGPs, leading 

to the depolymerization of main and side chains with the release of free arabinose (Oosterveld 

et al., 2003; Wei et al., 2012). Most of the liberated arabinose combines with CGA to form 

melanoidins (Bekedam et al., 2006; Moreira et al., 2012; Nunes et al., 2012). Additionally, 

arabinose residues may contribute to the formation of formic and acetic acid (Ginz et al., 2000). 

While free galactose, another component of arabinogalactans, is primarily present in significant 

amounts in green beans, it undergoes rapid degradation during roasting (Redgwell et al., 2002) 

Reducing sugars like glucose and fructose concentrations increase in the initial stages of roasting 

due to sucrose degradation (Wei et al., 2012). However, nearly all free sugars are lost during 

roasting due to Maillard reactions and caramelization, contributing to water, carbon dioxide, 

colour, aroma, and taste formation (Poisson et al., 2017). 

 

2.5.1.2. Nitrogen containing compounds 

Although free amino acids (aspartic acid, glutamic acid and asparagine) constitute less 

than 1% of green coffee, their significance in shaping the final flavour of roasted coffee is 

considerable (Yeretzian et al., 2002). They play crucial roles as reaction partners in Maillard 

reaction and Strecker degradation, generating numerous potent odorants (Wong et al., 2008; 
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Yeretzian et al., 2002). Proteins and peptides can also serve as aroma precursors by breaking 

down into smaller reactive molecules (De Maria et al., 1996b). However, free amino acids are 

almost entirely degraded during roasting.  

Throughout the process of roasting, trigonelline, undergoes demethylation, leading to the 

production of niacin (Trugo, 2003). Moreover, trigonelline contributes to the formation of volatile 

compounds such as pyridines and pyrroles during the roasting process, enhancing the final aroma 

of the beverage (Monteiro and Trugo, 2005). The trigonelline concentration in roasted coffee is 

influenced by the roasting duration, with more intense roasting resulting in lower trigonelline 

levels in the beverage (Monteiro and Trugo, 2005). Commercial coffee samples have been found 

to contain trigonelline levels ranging from 0.2 to 0.5 g per 100 g of roasted coffee (Monteiro and 

Trugo, 2005). Alkaloids like caffeine exhibit relatively high stability and are not affected 

significantly by the level of roasting (Viani and Horman, 1974). 

 

2.5.1.3. Lipids  

During the roasting process, lipids can undergo thermal degradation to form aldehydes, 

which may react with other compounds present in coffee (Belitz et al., 2009). The oxidation of 

unsaturated fatty acids results in the production of potent aldehydes like hexanal, nonenal, and 

other enals, along with dienals (Belitz et al., 2009). However, these aldehydes are not considered 

key contributors to the aroma of coffee (Sanches-Silva, 2004). They can undergo further reactions 

such as cyclization or interaction with other coffee constituents (Spadone and Liardon, 1989). 

Hexanal is commonly used as an indicator of lipid oxidation in various food products and has also 

been associated with coffee staling, among other compounds (Spadone and Liardon, 1989). 

 

2.5.1.4. Organic acids 

CGA undergo significant degradation during coffee roasting. This degradation results in 

the formation of hydrolysis products such as quinic acid and phenolic acids like ferulic acid, which 

further break down to produce important phenolic odorants like guaiacol and 4-vinyl guaiacol 
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(Jaiswal et al., 2012). Approximately 90% of total CGA, equivalent to 7% of green coffee solids, 

react after 9 minutes of roasting (Farah et al., 2005). Recently, the identification and formation 

pathways of bitterness components in roasted coffee have been elucidated by Jaiswal et al (2012). 

CGA lactones, the breakdown products of CGA (CQAs), have been recognized as major 

contributors to bitterness in coffee (Jaiswal et al., 2012). Moreover, the decarboxylation of CGAs 

during roasting leads the increase in phenolic compounds such as vinyl guaiacol, phenol and 

guaiacol (Moreira et al., 2000). Guaiacols are the main phenolic representatives of roasted coffee 

flavour (Arruda et al., 2012) 

 

2.6. Coffee extraction methods  

Coffee preparation is a solid-liquid extraction where both soluble and insoluble 

compounds in coffee migrate to the coffee brew (Wang and Lim, 2023).  The process coffee 

extraction process, benefits from increased surface area per unit volume of extractable solids 

and decreased particle radial distances within the solids, both of which are facilitated by smaller 

particle sizes (Cordoba et al., 2020). The mass transfer mechanisms involved in these steps are 

intricate and heavily influenced by the microstructures developed during the coffee bean roasting 

process, as well as the inherent properties of the coffee grounds (such as variety, roast profile, 

grind size) and brewing conditions (including temperature, extraction time, brewing pressure, and 

brew ratio) (Wang & Lim, 2023). 

The extraction process can be categorized into three broad methods: decoction methods 

(such as Turkish coffee, boiled coffee, percolator coffee, and vacuum coffee), infusion methods 

(including Napoletana and filter coffee), and pressure methods (like Moka, Plunger, and espresso) 

(D’Agostina et al., 2004).  

Different brewing methods (Figure 2) significantly impact the strength of coffee by 

influencing various factors such as the extraction process, temperature, and contact time with 

water (Wang and Lim, 2023). Furthermore, the brewing temperature, time, and extraction 

process play crucial roles in determining the strength of coffee, with variations in these 
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parameters leading to differences in the chemical composition and sensory characteristics of the 

brewed beverage (Orent et al., 2011; Petracco, 2001a).  

 

Figure 2: Different coffee extraction methods (Cordoba et al., 2020) 

 

2.6.1. Pour-over extraction and the V60 

The pour-over coffee method is often referred to as drip coffee or filter coffee (Mestdagh 

et al., 2017). It requires coarse to medium fine particle-sized coffee grounds (600μm) to enable 

water to pass through the coffee bed solely by gravity (Frost et al., 2020; Mestdagh et al., 2017). 

The ground coffee is placed in a holder with a filtration device (Chen et al., 2023). Various filter 

sizes, shapes, and materials can be employed to regulate the filter bed’s shape and level of 

filtration (Frost et al., 2020; Mestdagh et al., 2017). The filtered water then collects in a serving 

vessel while retaining the grounds in the filter.  

The shape and depth of the filter and the coffee bed are subjects of considerable 

discussion as they significantly influence extraction quality (Chen et al., 2023; Frost et al., 2019, 

2020a). Many filter coffee systems, like the V60, utilize cone-shaped filters, which create a conical 

coffee bed that optimizes the extraction of specific flavours, ultimately affecting the taste of the 
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final brew (Chen et al., 2023; Frost et al., 2019). Besides, the concentration of lipids in filtered 

coffee may be considerably reduced due to the retention of lipophilic molecules in the filter paper 

(Rendón et al., 2017). This was supported by Chen et al (2023), who found significant differences 

in TDS, EY and fat content of the same coffee samples brewed with filters of different shapes and 

materials were. Furthermore, the concentrations of volatiles as well as chlorogenic acids were 

different across filter types. Figure 3 a) illustrates a model of the V60 and b) the set-up in use. 

 

 

 

 

 

 

 

 

Figure 3: a) 3d model (Chen et al., 2023), and b) actual V60 set-up 

2.6.2. Extraction parameters and their impact on brew strength 

2.6.2.1. Effect of Water temperature   

The temperature of the water plays a crucial role in achieving a well-balanced extraction 

of roasted coffee. The recommended brewing temperature range for hot coffee is typically 

between 91°C and 94°C, which represents a compromise aimed at achieving both a good 

extraction yield and a balanced sensory profile (Mestdagh et al., 2017) 

Lower temperatures result in inefficient extraction of certain compounds whiles higher 

temperatures tend to favour the extraction of less polar compounds, such as bitter, astringent, 

and phenolic compounds (Severini et al., 2016). Higher water temperatures increase the kinetic 

energy of water molecules, enhancing their mobility and increasing the likelihood of leaching 
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compounds from the coffee bed due to greater physical forces (Severini et al., 2016). Moreover, 

higher temperatures lead to lower viscosity, allowing water to penetrate the coffee bed more 

easily and access intercellular spaces to solubilize coffee compounds (Mestdagh et al., 2017).  

Hence, it can be inferred that the level of TDS of coffee brew is higher at elevated temperatures. 

This relationship, however, is not linear for all components, as observed in the solubility 

differences between caffein and citric (Albanese et al., 2009; Salamanca et al., 2017). 

 

2.6.2.2 Particle Size of ground coffee   

Grinding roasted beans increases the surface area available for extraction and aids in the 

transfer of soluble and emulsifiable substances into the water during brewing (Rodrigues et al., 

2019). Hence, controlling the grinding conditions is crucial as it directly impacts the resulting 

flavour of the brew (Rodrigues et al., 2019).  

During the grinding process, a variety of particle sizes and shapes can be generated within 

the same sample, characterized by the particle size distribution (PSD) (von Blittersdorff and Klatt, 

2017). The PSD is influenced by moisture content of the roasted beans and the roasting protocol 

(von Blittersdorff and Klatt, 2017). Shorter roasting protocols are associated with increased 

porosity and brittleness of coffee beans due to loss of cell wall elasticity (Illy and Viani, 2005; von 

Blittersdorff and Klatt, 2017). Conversely, coffee beans roasted slowly tend to form a matrix with 

more uniform pore sizes and higher density resulting in a more homogeneous PSD (Von 

Blittersdorff & Klatt, 2017). The result of which is uniform and consistent extraction. 

Ground coffee with larger coffee particles have less total surface area available for contact 

with water, resulting in a faster but less efficient extraction process (Rodrigues et al., 2019). On 

the other hand, smaller particles allow for a more efficient extraction due to increased surface 

area, resulting in a slower flow of water through the coffee grounds (Andueza et al., 2003; 

Cordoba et al., 2020, 2019; López-Galilea et al., 2007; Rodrigues et al., 2019; Walston et al., 2022). 
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2.6.2.3. Pressure 

The application of pressure within a fluid generates potential energy, which can readily be 

converted into kinetic energy, imparting velocity to tiny masses of fluid (Cordoba et al., 2020). 

This process drives micron-sized solid particles or oil droplets into the cup, potentially altering the 

properties of the beverage and enriching its sensory characteristics (Petracco, 2001b). One 

benefit of using pressure is that aromatic compounds are less prone to evaporate from the coffee 

bed compared to non-pressurized or low-pressure extraction methods. Instead, these 

compounds are retained in the cup to a greater extent (Sánchez López et al., 2016). 

 

2.6.2.4 Water quality and quantity 

Water is the second most essential ingredient after roasted coffee beans. Its 

characteristics such as hardness, acidity, and cation composition can directly impact the sensory 

outcome of the extract (Hendon et al., 2014). Highly soluble compounds like caffeine, organic 

acids and sugars are extracted rapidly, often reaching over 90% extraction yield within the first 

few seconds of brewing (Severini et al., 2016; Stadler et al., 2002). Consequently, a lower 

extraction yield (under-extracted coffee) tends to result in a cup profile characterized by water-

soluble compounds, leading to a sweeter and more acidic taste profile (Andueza et al., 2007). For 

instance, in drip coffee brewing, like the V60, it's estimated that approximately 90% of the caffeine 

is extracted within the initial minute of brewing (Mestdagh et al., 2017). Conversely, less soluble 

compounds require more time (or water volume) for extraction. Figure 4 illustrates the scheme 

of extraction and the influencing process variables. 
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Figure 4: Extraction and associate process variables. (Cordoba et al., 2019) 

 

2.7. Chemical composition of brew 

Coffee brew contains volatile and non-volatile components as well suspended particles 

from fines (Belitz et al., 2009). As stated earlier, the concentration depends on the brewing 

methods and the various process variables such time, temperature, percolation time, water 

quality among others (Belitz et al., 2009). 

 

2.7.1. Non-volatile constituents  

The non-volatile constituent comprises carbohydrates, lipids, organic acids, minerals, 

melanoidins, chlorogenic acids, nitrogen-containing substances as well unidentified chemical 

constituents (Ludwig et al., 2014). Polysaccharides make up approximately 24 % of the dry weight 

of arabica brew (medium roast), composed mainly of galactomannans and arabinogalactans 

(Belitz et al., 2009; Moreira et al., 2011). They serve many flavour functions including foam 

stabilisation (Nunes et al., 1997), increase viscosity (Arya and Rao, 2007) and bind aroma 

compound (Clifford, 1985).  
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The second class of non-volatile components found in coffee brew comprise organic acids, 

mainly formic, acetic, malic, and phosphoric acid, and CGA (14% of dry brew weight) (Belitz et al., 

2009; Cordoba et al., 2020). These acids are linked to the astringency, bitterness, and acidity of 

the beverage, particularly those with higher concentrations, like caffeoylquinic acid and 

feruloylquinic acid (Farah, 2019).  

Nitrogen-containing compounds make up the third class of major non-volatile compounds 

with the most abundant being caffein and trigonelline (Belitz et al., 2009; Cordoba et al., 2020). 

Additional alkaloids found in coffee beverage are furan-2-yl methylated benzene diols, triols and 

phenylindanes (Frank et al., 2007; Kreppenhofer et al., 2011).  

Melanoidins round off the major non-volatile components of coffee brew. In addition to providing 

colour, melanoidins influence flavour release through the presence of diverse functional groups 

(Bekedam et al., 2006; Hofmann et al., 2001; Moreira et al., 2012; Nunes and Coimbra, 2007). As 

mentioned earlier, the lipid concentration in filtered coffee brew is much less due to the retention 

of lipophilic molecules to the filter papers (Rendón et al., 2017). According to Petracco (2001), 

paper filters excel in capturing oil droplets, permitting approximately 10 mg/l to pass into the 

brew.  

 

2.7.2. Characterization of Coffee Brew  

Coffee brew consists of a solution matrix containing salts, acids, sugars, and specific 

compounds such as caffeine, alongside various dispersed phases (Lyman et al., 2003). These 

dispersed phases include emulsions (consisting of oil droplets), suspensions (comprising solid 

particles), and effervescence (consisting of gas bubbles) (Petracco, 2001b).  

Coffee is characterized by parameters such as viscosity, density and refractive index 

among others (Moreno et al., 2015; Petracco, 2001a). According to Viani and Petracco (2007) the 

density of coffee brew with high lipid content like those characteristics of expresso, are lower 

than water. 
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Characterizing coffee brew by refractive index is challenging due to the polyphasic nature 

of the brew (Viani and Petracco, 2007). Filtered brews typically have refractive index values 

ranging from 1.333 to 1.338 in contrast to the index of pure water (1.333 at 20°C) (Petracco, 

2001b). Measures of refractivity on filtered aliquot of espresso exhibit no major difference 

concerning the influence of solutes and dispersed phases (Petracco, 2001b).  

In a recent study by Moreno et al (2015) characterised coffee brew by refractive index and 

Brix° using diluted freeze-dried coffee samples. This suggests that the inconsistencies 

encountered by Petracco (2001b) could be attributed to the volatiles and gases. This has not been 

confirmed by an independent. 

 

2.8. Cup Quality and Total Dissolved Solids (TDS) 

In the quest to comprehend the interplay between coffee quality factors, cupping taste 

analysis stands as a globally recognized and utilized method, despite its inherent subjectivity 

(Cardoso et al., 2017). Various studies have endeavoured to establish a correlation between the 

physicochemical properties of coffee and sensory perception of quality aiming to enhance 

sensory analysis with greater standardization and precision (Borém et al., 2008; Pereira et al., 

2018). This is essential because the chemical composition of coffee is intricately linked to 

consumer perception of brew quality. Chemical components of coffee brew of interest include 

caffeine, trigonelline, 5-caffeoylquinic acid, minerals, and sucrose among others (Barahona et al., 

2020; Bicho et al., 2013; Lacerda, 2014; Martinez et al., 2018; Morales-Ramos et al., 2020; 

Pinheiro et al., 2021). Despite the immense progress made in mapping chemical components to 

desirable sensory attributes, quantifying these components individually is cumbersome (Gloess 

et al., 2013).  

Estimations of the TDS of brew with simple instruments like a refractometer is a more 

practical approach to assessing in-cup quality due to its strong correlation with brew “strength” 

and relative ease of estimation (Petracco, 2001b). Furthermore, it aids in control of other cup-

quality parameters like balance. TDS is defined as the mass concentration of all dissolved species 

in a brew expressed as a percentage (Sunarharum et al., 2014). Moreover, TDS allows for mass 
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conversion arguments to calculate the extraction yield (EY), which is the ratio of mass extracted 

from coffee to the weight of the coffee grounds used (Sunarharum et al., 2014).   

According to mass conservation arguments, there is a linear correlation between the EY 

and TDS, where the slope is related "brew ratio", which is the ratio of the mass of water used to 

the mass of coffee grounds (Cordoba et al., 2020; Ristenpart and Kuhl, 2015). This relationship 

forms the basis of Brewing Control Charts of the Specialty Coffee Association used to estimate 

coffee brew flavour profile (Lockhart, 1957).  TDS values 0.79 - 1.25% and EY between 18 - 22%, 

according to the Brewing Control Charts, represent ideally brewed coffee (Lingle, 2011; Lockhart, 

1957; Ristenpart and Kuhl, 2015).  

The nine superimposed areas on the Brewing Control Chart represent distinct levels of 

brewing quality (Lockhart, 1957). Brews below 18% are perceived as under-extracted or lacking 

in development, resulting in overly sweet and acidic flavours (Lockhart, 1957). Conversely, brews 

exceeding this range are considered over-extracted, leading to unpleasant bitter and astringent 

tastes (Lingle, 2011). Furthermore, brew characterized by low EY and high TDS is categorized as 

"strong underdeveloped" coffee, while one with high PE and low TDS is labelled "weak bitter." 

The central zone is recognized as "ideal" for all brewed coffee. These delineated quality zones 

serve as widely accepted guidelines in the coffee industry to facilitate the production of coffee 

with enhanced consistency and quality (Lockhart, 1957). 

The Brewing Control Chart has been expanded in recent years by Frost et al (2022) and 

Betali et al (2020a). They demonstrated in their studies that high TDS was strongly correlated with 

bitterness, roast-like aromas, and smokiness; while high TDS coupled with low EY was correlated 

with sourness and citrus, lower TDS is associated with high sweetness and tea-like.   
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It is noteworthy, however, that TDS is composed of soluble (about 90%) and suspended 

particles ( about 10%), hence, brewing techniques that utilize a filter like the V60, may yield lower 

values of TDS (Petracco, 2001b). Figure 5 illustrates the coffee brewing chart. 

 

 

 

 

 

 

 

 

 

 Figure 5: Brewing control chart (Lockhart, 1957) 

2.9. TDS estimation 

TDS is measured with gravimetric methods such as oven-drying, electrical conductivity, 

refractive index-based TDS meters and hydrometers (Gajdoš Kljusurić et al., 2015; Pinheiro et al., 

2021; Wang and Lim, 2023). Oven-drying and refractive index-based estimates are predominantly 

used for routine analysis and research purposes (Moreno et al., 2015; Pinheiro et al., 2021; Wang 

and Lim, 2023). 

 

2.9.1 Oven-drying method 

The determination of coffee TDS by the oven drying method involves drying a sample in 

an oven until all moisture is removed (Petracco, 2001b).  The oven drying method can be time-

consuming, taking several hours, as well as associated loss of volatile compounds (Wang & Lim, 

2023). Drying protocols that incorporate microwave ovens significantly reduce drying time 

(Carlson et al., 2013; Hemphill and Martin, 1992; Marquez et al., 1995; Van Wychen and Laurens, 

2023). 
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2.9.2. Refractive Index and Brixº measurement 

The TDS of coffee brew can be accurately measured using a refractometer calibrated for 

the coffee matrix (Wang & Lim, 2023). The refractometer utilizes a prism-sample interface to 

refract light towards a photodetector, determining TDS based on the index of refraction of the 

brew and its temperature (Fedele, 2012). According to Moreno (2015), components such as 

melanoidins and sediments of coffee extract affect the diffraction of light. Measurements 

obtained from refractometers and Brixº meters (refractometer calibrated on the Brixº scale – 1 

Brixº equals the refractive index of 1% W/W sucrose at 20ºC) cannot be used for direct estimation 

of TDS of coffee without a correction factor (Kimball, 1991; Moreno et al., 2015).  

This is due to the low sucrose and high organic acids in coffee brew (Kimball, 1991; 

Sunarharum et al., 2014). In pursuit of a correction factor, several independent studies (Aloe, 

2022; Gómez, 2019) have proposed the equation; TDS% = 0.85*(Brixº) + Af, where Af is the 

temperature adjustment factor required for analogue refractometers (Gómez, 2019). It is worth 

noting that the TDS and Brixº values used for the analysis were estimated with digital 

refractometers with a predefined coefficient for converting Brixº to TDS. 

In a peer-reviewed study by Moreno et al (2015), they proposed TDS% = 0.87*Brixº at 

20ºC. This lends credence to the conversion factor, but the potential influence of coffee roasted 

across various levels of intensity in combination with different extraction methods remains 

unanswered. As noted earlier, estimating the refractive index of coffee brew is particularly 

challenging due to the polyphasic nature of the brew (Viani and Petracco, 2007). Moreover, 

refractive index and by extension Brixº measurements are sensitive to temperature fluctuations 

which necessitates a temperature correction (Kimball, 1991).  

 

2.10.1. Role secondary analytical methods and NIRS 

Secondary analytical methods have been applied extensively in the food industry to 

estimate raw material quality, undertake process control, rapid analysis and product development 
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(Reh, 2008) The primary drivers behind the mass adoption are cost reduction and efficiency, 

which allows for improved product quality, reduction of waste, routine analysis and increased 

production capacity among others (M. M. Ali & Hashim, 2022; Odabaş & Çakmak, 2021; Shao et 

al., 2022). 

The various methods of estimating TDS of coffee require the preparation of coffee brew 

from roasted coffee beans (Wang and Lim, 2023). Hence, exploring secondary analytical 

techniques in this regard will be immensely beneficial to the coffee industry. NIRS stands out as a 

major secondary non-destructive analytical method that has been applied extensively in the 

coffee industry to estimate quality parameters of coffee (Baqueta et al., 2020; Budiastra, 2020; 

Esteban-Dıez et al., 2004; Grassi et al., 2023; Kumaravelu & Gopal, 2015; Mutz et al., 2023; Ribeiro 

et al., 2012; Zhang et al., 2013).  

  NIRS is based on the unique interaction of electromagnetic radiation in the NIR range with 

matter (Sandorfy et al., 2006). According to Sandorfy et al (2006) the interaction manifests as the 

absorbance of frequencies of polychromatic light that corresponds to the molecular vibrational 

transition of the material. The chemical and physical characteristics of the materials are thus 

deduced from the resulting spectra (Sandorfy et al., 2006) 

 

2.10.2.  Theoretical background 

NIR spectra are generated primarily by the weak, broad overtones and combination bands 

of fundamental vibrational transitions linked to C-H, O-H, S-H and N-H functional groups (Teye et 

al., 2013). The NIR region covers a wavenumber range of 12500cm-1 - 4000cm-1, where absorption 

bands primarily correspond to overtones and combinations of fundamental vibrations (Blanco 

and Villarroya, 2002).  

Vibrations of the molecules have been described with the harmonic and anharmonic 

oscillator models with the latter offering a more robust explanation of the behaviour of observed 

molecules (Sandorfy et al., 2006). The anharmonic model is represented by the equation; 

𝐸𝑣𝑖𝑏 = ℎ𝑣 [1 − (2𝜈 +  𝛥𝜈 + 1)𝛾]        (1) 
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where Evib is the energy of vibration, 𝑣 is the vibrational quantum number, ν is the fundamental 

vibrational frequency, γ is the anharmonicity factor (Teye et al., 2013).  The anharmonicity factor 

accounts for transitions between non-adjacent vibrational states which results in overtones; 

multiples of fundamental vibrational frequency (Kumaravelu and Gopal, 2015)  

According to Kumaravelu & Gopal (2015) at typical room temperature, the transition from 

the ground state to the first excited state strongly absorbs light in the infrared (IR) region, 

generating intense fundamental bands (Kumaravelu and Gopal, 2015). They added that the 

transition from the ground state to the second excited state, involving the absorption of near-

infrared (NIR) light, results in weak bands known as the first overtone. Similarly, the transition 

from the ground state to the third excited state, also absorbing NIR light, leads to weak bands of 

the second overtone (Ozaki et al., 2006). Third and fourth overtone bands occur based on 

transitions to the fourth and fifth excited states, respectively, with the absorption of NIR light 

(Sandorfy et al., 2006). 

In molecules with multiple atoms, the interaction of two or more vibrational modes can 

lead to simultaneous energy changes, resulting in absorption bands known as combination bands 

(Ozaki et al., 2006) These bands have frequencies that are the sums of multiples of each 

interacting frequency (Kumaravelu and Gopal, 2015; Ozaki et al., 2021).  

 

2.10.3 Modes of NIR spectra acquisition 

NIR measurement techniques can be categorized into two main methods: transmittance 

and reflectance (Barbin et al., 2014; Fontes et al., 2022). Transmittance is suitable for clear liquids 

or thin solid samples like solutions, suspensions, fibres, powders, films, and gases (Dahm and 

Dahm, 2021).  Transmittance further divides into regular transmittance and transflectance 

methods which can be used for bulk materials such as clear suspension (Barbin et al., 2014).  

Reflectance, on the other hand, is applicable to solid samples like whole and ground coffee 

beans, fabrics, pastes and powders, relying on the reflection from the rough surfaces of scatterers 

(Ikehata, 2021).  In diffuse reflection, the incident ray undergoes partial reflection by the surface 
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of the sample and partial transmission beneath it (Pasquini, 2003). The transmitted ray is 

refracted and reflected multiple times on the surfaces of particles, with a portion exiting the 

scatterer. The process bears similarity with transmitted light as it travels within the absorptive 

material (Pasquini, 2003). As the rays disperse in various directions upon exiting the object’s 

surface, a gold-evaporated integrating sphere is commonly employed to efficiently capture them 

(Pasquini, 2003). For swift measurements, a detector is positioned at an off-angle side of the 

standard reflection to avoid direct contact with the sample (Ikehata, 2021). 

For solutions and suspensions with low turbidity like coffee brew, transflectance 

measurement is preferred for obtaining efficient spectra absorption (Ikehata, 2021; Lyman et al., 

2003; Ozaki et al., 2006). To achieve this, it is essential to use window materials with optimum 

path length and refractive index as well as applicability in the wavelength region of interest 

(Ikehata, 2021; Ozaki et al., 2006)). The temperature at which measurements are obtained is 

important as NIR spectrum is highly sensitive temperature (Williams, 2007). 

Both transmittance and reflectance methods require a background measurement, 

involving the measurement of the intensity, I0, of the transmittance or reflectance light from the 

background (Osborne, 2006; Osborne et al., 1993; Pasquini, 2003). This intensity, I0, can be 

measured either before each sample or at convenient intervals during routine analysis (Osborne, 

2006). Subsequently, the intensity of the sample light, I, is measured. The absorbance of the 

sample is then determined using the formula A = −log(I/I0) for transmittance measurements 

(Osborne, 2006). In the case of reflectance measurements, the reflectivity, R = I/I0, is obtained, 

and the absorbance of the reflectance is expressed as log(1/R) (Ikehata, 2021) 

 

2.10.4 Interpretation of NIRS 

The foundation of spectral analysis in NIR spectroscopy relies on band assignments, yet, 

these assignments are typically intricate due to the overlap of numerous bands stemming from 

overtones and combinations which complicates the task (Illy & Viani, 1995; Lyman et al., 2003; 

Ozaki et al., 2021; Wang et al., 2012). For samples with complex spectrum like coffee, detailed 

band assignments might not always be essential but remains important to discern the various 
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functional group from which a band originates (Illy and Viani, 1995; Ozaki et al., 2021; WANG et 

al., 2012) 

The strength of light absorption is heavily influenced by the extent of change in dipole 

moment during vibrational transitions as observed in X-H (where X is C, O, N or S), C=O and C≡N 

(Czarnecki et al., 2015). Consequently, the vibrations of heteronuclear diatomic molecules 

dominate the NIR spectra (Czarnecki et al., 2015; Ozaki and Morisawa, 2021). In addition, the 

multiple vibrational modes of polymeric molecules are either interconnected or coupled, which 

results in broad overlapping combinations bands complicates direct functional group assignments 

(Ozaki and Morisawa, 2021; Siesler, 2007). 

For samples with high moisture, it is important to note that the first overtone bands of O-

H and N-H stretching modes in monomeric species exhibit much higher intensity compared to the 

corresponding bands in polymeric species (Ozaki et al., 2021). Thus, the spectra of water have an 

intense foot observed  at 4000 cm-1 (Ozaki et al., 2006). Furthermore, two strong bands useful for 

investigation  are observed at 5235 and 6900 cm−1 (Ozaki and Morisawa, 2021). These are the 

result of combination of H-O-H antisymmetric stretching mode (second overtone) and bending 

mode (first overtone) and that of H-O-H symmetric (fundamental) and antisymmetric (second 

overtone) stretching modes, respectively (Ozaki and Morisawa, 2021). Hence, the spectra of 

samples with high water content like coffee brew are often dominated by bands origination from 

first overtone O-H stretch modes and may overshadow bands from terminal functional groups 

like O-H in organic acids (Hu et al., 2006). 

Lastly, NIR spectrum is affected by variations in particle size distribution and density. These 

cause differences in the path length travelled by photons before reaching the detector (Martens, 

2001). These physical discrepancies between samples induce light-scattering effects, resulting in 

shifts in the baseline and variations in intensity (Martens, 2001).   
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2.10.5. Chemometrics applied in assessing coffee quality. 

The NIR spectra of complex materials like roasted coffee beans possess broad overlapping 

NIR absorption bands which are influenced be the chemical and structural properties of the 

sample (Teppola, 2002). This renders the spectra acquired multivariate and requires chemometric 

procedures to filter information of interest by describing how multivariate spectral features 

(independent variable) relate to the properties of the analyte of interest (dependent variable) 

(Teppola, 2002)  

 

2.10.6 Preprocessing techniques 

As note earlier, physical and chemical differences in samples translate to unwanted 

variations in NIR spectra (Martens, 2001), thus a major goal of pre-processing is to linearize 

spectra in accordance with the Lambert–Beer law (Ozaki and Morisawa, 2021). One such 

unwanted variation in NIR spectrum is baseline shift, which is the result of multiplicative and 

additive effects (Teppola, 2002).  The Savitzky-Golay (SG) derivatives has found extensive 

applications in this regard (Esteban-Dıez et al., 2004; Pizarro et al., 2004; Teófilo et al., 2009).  The 

pretreatment method diminishes baseline shift by employing a low-degree polynomial fit around 

a given point within a spectrum (Savitzky and Golay, 1964). One downside of derivative methods 

is that the signal-to-noise ratio of the spectrum may worsens with derivative step (Savitzky and 

Golay, 1964). 

Further methods for correcting baseline shift are multiplicative scatter correction (MSC) 

and standard normal variate (SNV) (Esteban-Dıez et al., 2004). MSC addresses additive (vertical) 

baseline variations and multiplicative baseline shifts by applying a basic linear univariate fit to a 

standard spectrum to enhance linearity of the spectra (Sørensen et al., 2021). While generally 

beneficial, using MSC requires caution as it may inadvertently introduce unwanted artefacts 

(Esteban-Dıez et al., 2004; Shimoyama et al., 1998).  The Standard Normal Variate (SNV) method 

is another effective technique for rectifying the vertical baseline drift in a series of spectra (Barnes 

et al., 1989). SNV operates by computing and standardizing the mean and standard deviation of 

the intensities within each spectrum (Barnes et al., 1989). 



34 
 

Noise remains a major part of undesired variations in NIR spectra (Sørensen et al., 2021). 

High-frequency noise is the most encountered and is generally associated with the NIR 

instrument’s detector and electronic circuits (Ozaki et al., 2021). Noise can be mitigated by 

incorporating accumulation-average processing into the spectrum data collection process (Ozaki 

et al., 2006) . While Savitzky-Golay (SG) derivative can be used to eliminate high-frequency noise, 

it’s important to note that increasing the smoothing intensity by adding more smoothing points 

may cause distortion, resulting in reduced resolution and band intensity (Savitzky and Golay, 

1964). Other preprocessing methods include cantering, normalization, orthogonal signal 

correction (OSC) and other (Esteban-Dıez et al., 2004). The preprocessing method is often tied to 

the aim of the aims of study. 

 

2.10.7. Data reduction and classification 

NIR spectrum contains data collected across hundreds of different wavelengths, which 

makes dimension reduction processes imperative (Pizarro et al., 2004). Furthermore, NIR 

spectrum often exhibits a high correlation among adjacent variables (absorptions at various 

wavelengths), known as multicollinearity (Sørensen et al., 2021). The phenomenon complicates 

linear regression models used for calibration and prediction, hence the need for dimension 

reduction (Sørensen et al., 2021). 

Principal Component Analysis (PCA) is applied extensively to this effect as a data 

compression tool and an unsupervised pattern recognition technique in qualitative NIR analysis 

(Hotelling, 1933). The model works by decomposing correlated variables into a smaller set of 

uncorrelated latent variables called principal components (PCs) (Wold et al., 1987). The first PC 

ideally captures the most variance in the data, with subsequent PCs capturing the remaining 

variance while being orthogonal to previous components (Wold et al., 1987).  

Furthermore, each principal component comprises a linear combination of original 

variables, with scores indicating the orientation of each variable to the PC, and loadings 

characterizing the orientation of the PC vector (Wold et al., 1987). The score plots aid in 
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interpreting PCA results, facilitating outlier detection and analysis (Pizarro et al., 2007; Wold et 

al., 1987).  

 

2.10.8 Quantitative analyses of NIR data 

The objective of multivariate calibration involves developing a predictive model that 

establishes a relationship between the NIR spectra and the analyte concentration (Wold et al., 

1983) In this process, calibration aims to model analyte concentrations (y-variables) as linear 

combinations of absorption spectra (x-variables) (Wold et al., 1983). This enables the prediction 

of analyte concentrations in unknown samples solely based on absorption spectra (Sørensen et 

al., 2021). PCR and PLS are the most encountered because they allow for incorporating more 

information into the calibration model and are not hindered by multicollinearity like in MLR (Wold 

et al., 1983). In PLS, the largest covariance between independent variable (spectral data) and 

dependent variable is used as a weight vector to guide the regression in the direction of the 

highest systematic variance in the dependent variable as function of the dependent variable 

(Smilde et al., 2004).  The scores in PLS are derived from projecting the dependent variable onto 

the weight vector, followed by determining the loadings through the regression of scores on 

independent variable (Smilde et al., 2004).  

The performance of multivariate models always has to be validated. Typically, validation 

focuses on assessing the models’ ability to extrapolate the values of new samples (Sørensen et 

al., 2021). The process involves separating the dataset into calibration and test sets where the 

calibration set is used to build the model and the test set to evaluate model performance 

(Martens et al., 1987). In splitting the data into validation and calibration sets, it must be ensured 

that they are independent of each other, that is, the same physical sample cannot appear in both 

datasets, either as individual measurements or as replicates. (Smilde et al., 2004). In cases where 

the dataset isn’t large enough to partition, cross-validation, can be utilized (Smilde et al., 2004). 

The process involves sequentially excluding one or more samples from the dataset to create a 

calibration model with the remaining samples and then using that model to predict the values of 

the excluded samples (Wakeling and Morris, 1993; Wold, 1978).  
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Model performance is evaluated with Pearson’s correlation coefficient ® and the 

coefficient of determination (R²) between known dependent variables and their associated 

predicted variables (Wakeling and Morris, 1993).’It's important to note that these metrics are 

considered alongside the root mean square errors of calibration and prediction (RMSEC and 

RMSEP) (Wakeling and Morris, 1993) The optimal model is one with a sufficiently high correlation 

(R and R2) as few as possible components, and low prediction error (root mean squared error of 

prediction) (Sørensen et al., 2021). 

 

2.10.9. Assessing coffee quality characteristics with NIRS  

NIR spectrometry has been used to assess the multitudes of coffee quality characteristics 

(Baqueta et al., 2020; Budiastra, 2020; Esteban-Dıez et al., 2004; Grassi et al., 2023; Kumaravelu 

& Gopal, 2015; Mutz et al., 2023; Ribeiro et al., 2012; Zhang et al., 2013). 

Discriminating and classifying arabica and robusta varieties is one such major field. These 

include; discriminating between arabica and robusta samples (Downey et al., 1997), and 

distinguishing coffee samples from different lots and producers (Santos et al., 2012) ; 

discriminating Kona coffee from adulterants (Wang et al., 2009).   

NIRS has also seen application assessing degree of roasting and associated changes in 

quality characteristics. Examples include; discriminating roasted coffee beans by the level of 

roasting (Ribeiro et al., 2010); and relating roasting level of coffee to quality attributes like total 

acidity, chlorogenic acids, and colour (Esteban-Díez et al., 2004a) 

Perhaps the most relevant applications of NIR spectroscopy in relation to this research are 

those aimed at predicting coffee composition from the NIR spectra of beans and brew (Barbin et 

al., 2014). These applications include predicting;  the moisture content of green beans (Morgano 

et al., 2008); caffeine content of roasted ground coffee (Garrigues et al., 2000; Huck et al., 1999, 

2005; Zhang et al., 2013), effect of roasting conditions on flavour profile of coffee brew (Lyman et 

al., 2003); and determination of plant fat and sugar content in coffee beverage (Wang et al., 2012). 
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As demonstrated, the feasibility of applying NIRS to assess the TDS of roasted coffee 

remains unexplored. We therefore aim to conduct a feasibility study to estimate the TDS of coffee 

from NIR spectra of the roasted beans and brew. 
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3. MATERIALS AND METHODS 

3.1. Coffee samples 

Green coffee beans (48 Coffea arabica and 2 Coffea canephora), originating from five 

regions; South America; Asia; Central America and Africa. 

 

3.2. Roasting Protocol 

The fifty original samples (300g) were roasted on a small scale, using a predefined 

protocol (reference). Three levels were set for the first crack (start of roasting): light, medium 

and dark roasted. This generated 150 samples which were stored at -80°C until testing. Since 

different coffees behave differently during roasting, the boundaries between the distinct levels 

may be blurred. To produce light roasted coffees, the process was stopped 40 seconds after the 

first crack, while for the other two levels, the time was changed to 60 and 90 seconds. The starting 

temperature was about 150°C and the final temperature was 190°C. A Probat sample roaster was 

used for roasting (Leogap, Curitiba, PR, Brazil). 

 

3.3. Grinding and Brewing 

The roasted beans (20 g) were ground using an electric grinder with a fine setting (4) to a 

median particle size distribution of 600µm. The particle size distribution was determined using a 

VWR EML 200 Remote Sieve with parameter: amplitude=1.5, interval=10 sec and time 10 

minutes. 

The brewing in this study was carried out using a V60 dripper (Hario, Japan). The setup 

consists of a ceramic cone, filter paper (pore size 203 ± 21 μm) and a scale. The filter paper, folded 

into a cone shape and then along the seam onto itself, was wetted with hot water (98 °C). The 

setup was then mounted on a beaker and placed on the scale. About 16 g of the previously 

weighed ground coffee was transferred into the V60 dripper. Subsequently, 40 g of hot water 

(96°C) was poured over the mass and swirled gently until a slurry formed. The slurry stood for 45 

seconds from the first pour. More hot water was poured in a horizontal and vertical circular 
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motion for 1 min 15 seconds from the first pour to yield 230 g of water. The setup was then 

manually swirled gently and allowed to stand until the coffee bed appeared visibly dry. The 

resulting brew was then covered with wax and allowed to cool to ambience overnight.  

 

3.4. Total Dissolved Solids and Extraction yield 

3.4.1. Oven drying method  

The total dissolved solids (TDS) of the coffee brew were determined using oven drying 

method (TDS-OD) adopted from a similar study (Andueza et al., 2007; Wang et al., 2019). TDS for 

this method refers to the residue of drying the eluent obtained from the V60 dripper (the pore 

size of filter paper for brewing is 20µm. Brew samples were pipetted (10ml) into previously 

weighed Petri dishes (dried at 105°C for 30 minutes). The weight of the samples was recorded 

and then dried at 105°C for 4 hours until constant weight was attained. The TDS was calculated 

using the formula:  

𝑇𝐷𝑆(%) =
𝑚𝑑𝑟𝑖𝑒𝑑 𝑏𝑟𝑒𝑤 −  𝑚𝑝𝑒𝑡𝑟𝑖𝑑𝑖𝑠ℎ

𝑚𝑏𝑟𝑒𝑤
∗ 100%      (2) 

𝑚𝑏𝑟𝑒𝑤  is weight of the pipetted brew; 𝑚𝑑𝑟𝑖𝑒𝑑 𝑏𝑟𝑒𝑤  is the weight of petri dish with the dried brew; 

𝑚𝑝𝑒𝑡𝑟𝑖𝑑𝑖𝑠ℎ is the weight of the petri dish. 

 

3.4.2. Measurement of Brix° 

A digital refractometer (HANNA instruments® H196801) was used to measure the Brix° of 

the coffee brew. A single-point calibration of the instrument was conducted with 200µL of 

distilled water. The Brix° was measured by pipetting 200µL of coffee brew into the stainless steel 

well of the refractometer and recording the corresponding values. The measurements were 

conducted at ambient temperature (20 - 25°C). Temperature correction of the Brix° was 

performed by the instrument.  The Brix° readings obtained were converted to TDS by the formula 

(Moreno et al., 2015):  

𝑇𝐷𝑆𝐵𝐶 = 0.87 ∗ 𝐵𝑟𝑖𝑥         (3) 
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Where TDSBC is Brix°-corrected TDS. 

 

3.5. Recording of NIR Spectra and data pre-processing 

3.5.1. Coffee brew 

The near-infrared Spectra of the coffee brew were collected between the range of 15798-

3554 cm-1 in transflection mode with Bruker MPA™ multi-purpose FT-NIR analyser (Bruker, 

Ettlingen, Germany). Brew samples were pipetted (1 ml) into a quartz cuvette (22mm). 

Instrument control and spectra collection were conducted using software, Opus 7.2 (Bruker, 

Ettlingen, Germany), which was supplied by the device manufacturer (Bruker, Ettlingen, 

Germany). Care was taken not to introduce bubbles into the brew samples during pipetting as it 

would increase the noise in the measured spectra. Background scans were recorded with a gold-

coated integrating sphere after which the spectrum was collected at room temperature (20-25 

°C). The spectra were smoothed with twenty-five points after which the triplicates were averaged 

for each sample. The spectra were collected over two months. 

 

3.5.2. Roasted Beans  

The near-infrared spectra of the roasted beans were obtained from a previous study using 

the same samples using the same instrument (Benes, 2023). The collection of spectra data was 

conducted with whole roasted bean samples (40-60 g) in a rotating cuvette (Ø85 mm) in six 

replicates. The spectral data were collected in diffuse reflection measurements mode within the 

range of 12500 – 3800 cm-1 (resolution 16 cm-1; scanning speed 10 kHz), using the OPUS 7.2 

(Bruker, Ettlingen, Germany) software. Each spectrum was calculated as the average of thirty-

two subsequent scans. Background scans were recorded with a gold-coated integrating sphere. 
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3.6. Statistical Methods 

3.6.1 Sample size calculation 

The minimum sample size required for Repeated Measures (RM) ANOVA was calculated 

a priori with G*Power (v3.1.9.7). The parameters used are as follows; [f (effect size) = 0.4, alpha 

error probability = 0.05, power (1- beta error probability) = 0.95, number of groups=1, number 

of measurements = 3, correlation among repeated measures = 0.5, non-sphericity correction 

=1)]. This resulted in a minimum sample size of 18, which is below the sample size used for the 

analysis (38 samples) (Faul et al., 2007). 

 

3.6.2 Chemometric evaluation 

The near-infrared spectra data was exported from Opus 7.2 (Bruker, Ettlingen, Germany) 

into The Unscrambler® X Version 10.4 (Camo Software As. Oslo Science Par Guastalleen 21 0349 

Oslo Norway) for chemometric analysis. The spectra data of the coffee brew and roasted beans 

was trimmed to the range 12489.48 – 4381.73cm-1 and 7004.598 – 3803.157 cm-1 respectively.  

Principal Component Analysis (PCA) was used for exploratory analysis of the spectra. Descriptive 

statistics (box plot and line plot) revealed variations and swoops across the various wavenumbers 

as well as baseline shifts. This is indicative of additive and chemical effects which are associated 

with the spectra of complex samples like coffee (reference). This prompted the decision to use 

Savitzky-Golay first derivative (FD) and second derivative (SD), Multiple Scatter Correction (MSC) 

and Standard Normal Variate (SNV) and their combinations; MSC and SD for the TDS-OD model 

of both brew and roasted beans spectra; SNV and SD for the TDS-BC model (coffee brew) and SD 

and SNV for the TDS-BC model (roasted beans). 

 

3.6.3 Partial least squares regression (PLSR) 

To estimate the TDS of the coffee samples, Partial least square regression (PLSR) was used 

to test two models for the two reference methods (TDS-OD and TDS-BC). Performance of the 

models were evaluated on different statistical indices such as RMSE, R2, among others.  Model 

validation was performed with random seven-fold cross validation. Statistical tests and 
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visualizations performed with the Unscrambler® X Version 10.4 (Camo Software, Oslo, Norway) 

and for data interpretation, various statistical software was used, such as SPSS Statistics 23 (IBM, 

New York, USA) and R statistical software package (Version 4.2.3.). 

  



43 
 

4. RESULTS AND DISCUSSION 

4.1 Data inspection and Cleaning 

The normality of the raw data was checked graphically with a boxplot and density curve. The 

shape of the density curve of TDS-BC (Fig 1) revealed the shapes of the light and dark roasting 

levels as bimodal while medium roasted appeared distorted. This prompted further tests for 

outliers. The density curve of TDS-OD did not show severe signs of distortion Figure 6 shows the 

Density plots of a) TDS-BC with distortion minor distortions to the left end and b) TDS-OC. 

.. 

 

 

 

 

 

 

 

. Figure 6 shows the Density plots of a) TDS-BC with distortion minor distortions to the left end 

and b) TDS-OC 
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4.1.1. Testing Outliers 

I performed the Mahalanobis distance test on the raw data which resulted in the detection 

of 12 outliers (Figure 7). The outliers were inspected against the original coffee samples, and it 

was determined their omission will not impact the aim of the study. At the end of the data 

cleaning process, I had 38 samples (114 for the three roasting levels).  

 

 

 

 

 

 

Figure 7.: Result of outlier detection based on the TDS of samples 

 

4.1.2. Effect of Roasting level on TDS  

To compare the mean TDS between the three roasting levels, the RM ANOVA model was 

applied. This model has the assumptions of normally distributed dependent variables and 

sphericity. The normality of TDS-OD and TDS-BC were tested by skewness and kurtosis and 

revealed that the assumption was satisfied; TDS-OD (Skewness =0.11; kurtosis = 0.65) and TDS-

BC (Skewness =0.4; kurtosis = 0.68). Mauchly’s test of sphericity of the RM ANOVA model for both 

variables revealed that the sphericity was satisfied; TDS-OD [χ² (2,74) = [0.95], p = [0.41] and TDS-

BC [χ² (2,74) = [0.97], p = [0.65]. 

 

4.1.3 Linear Regression Model of Brix° and TDS-OD   

To investigate the linear relationship between Brix° and TDS-OD, a linear regression 

model was applied.  A previous check for outliers was conducted to ensure accuracy of the 

model. 
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𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋1 + 𝜖          (4) 

Where; Y is the dependent variable (TDS-OD),  

 

𝑋1 is the independent variable (Brix°). 

𝛽0 is the intercept.  

𝛽1 is the slope coefficient. 

ϵ is the error term. 

The model assumes normally distributed variables and residuals as well as the independence of 

residuals from the explaining variable (Brix°). Normality of Brix°, TDS-OD and residuals   was 

checked and accepted by the absolute values skewness and kurtosis [ TDS-OD (Skewness = 0.11; 

kurtosis = 0.65, n=114)]; Brix (skewness = 0.09; kurtosis=0.62, n=14); and residuals [ (skewness = 

0.39; kurtosis=0.5, n=114)]. The mean of the residuals was extremely low (5.512847e-18). The 

normality of residuals was also tested graphically by density curve. The independence of the 

residuals from the explaining variable (Brix°) was checked by a scatterplot which showed that the 

homoscedasticity assumption was satisfied.  All statistical tests used were two-sided in the model, 

and significance level was set at 𝛼 = 0.05.  
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Figure 8.: a) Density plot residuals from the linear regression model, b) scatter plot of Brix vs 

residuals and c) Normality test of Brix 

 

4.2. Effect of Roasting level on TDS% 

The aim of the research is to conduct a feasibility study to predict the TDS of coffee from 

the NIR spectra of the roasted beans and brew. Hence, the TDS of the coffee samples roasted to 

three levels; light, medium and dark, were estimated with two reference methods; oven-drying 

(TDS-OD) and Brix° (TDS-BC). The within-group Repeated Measures (RM) Analysis of Variance did 

not yield significant differences in the mean TDS% of the coffee samples for both reference 

methods; TDS-OD (F (2;74) =2.01, p =0.14); and TDS-BC (F (2;74) = 3.11, p= 0.05). Results are 

summarized in Table 1. 

A number of studies have demonstrated the influence of roast degree on the mass 

concentration of extracted solids (Frost et al., 2020; Illy and Viani, 2005; Petracco, 2001a). The 

lack of significant difference in average TDS% across roasting levels could be attributed to the 

synergistic effects of the heterogeneity of the coffee samples, the uneven effect of roasting and 

the extraction protocol. Firstly, despite the homogeneity in variety, the coffee samples were 

sourced from seventeen countries across four continents. Moreover, they were subject to 
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different processing procedures (wet and dry).  The geographical origin and type of processing 

influence the composition of green beans (Herrera and Lambot, 2017; Vieira, 2008b). 

  Furthermore, the impact of roasting on the structure and composition of coffee beans is 

not linear, hence, the lines separating adjacent roasting levels may be blurred (Schenker, 2000; 

Schenker and Rothgeb, 2017). In addition, the changes in the microstructure of the beans and the 

resultant brittleness, which is pronounced in dark roasts, have been shown to impact the particle 

size distribution and morphology (Schenker, 2000; Schenker and Rothgeb, 2017; Uman et al., 

2016)  

These differences converge during the extraction process. In the manual V60 setup used 

in this study, the flow of water through the coffee bed is influenced by factors such as particle size 

distribution and morphology of ground coffee (von Blittersdorff and Klatt, 2017). These attributes 

influence the percolation time which in turns may cause variation in the mass concentration of 

coffee extract (Cordoba et al., 2020, 2019; Fuller and Rao, 2017). 

 

Table 1: Average values of TDS% values from TDS-OD and TDS-BC grouped by roasting level.  

method roast level mean (n) ± SD  minimum maximum 

TDS-OD (%) dark 1.61 ± 0.16a 1.28 2.00 

 

 

light 1.62 ± 0.13 a    1.38 1.87 

 medium 1.7 ± 0.13a      1.4 1.9 

TDS-BC (%) dark 1.7 ± 0.2a    1.4 2.1 

 light  1.7 ± 0.1a      1.5 2.0 

 medium 1.7 ± 0.2a     1.5 2.0 

*n=38, variables in rows denoted with the same superscript did not yield significant difference 

(p>0.05). SD-standard deviation of references method is in connection with roasting level (n=114). 
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4.3 Relationship between Brix° and TDS-OD 

The linear regression model resulted in a significant positive linear relationship between 

Brix° and TDS-OD; (𝐹 (1; 112) = 1005; 𝑝 < 0.001; 𝑅2 = 0.90; 𝑝 < 0.001). Brix° could account for 90% 

of the variation in TDS-OD measurement. Moreover, the regression coefficients were significant; 

𝛽0 = 0.11(95% CI:(0.01,0.20), 𝛽1=0.75(95% CI: (0.71,0.80) and ϵ (112) = 0.04. This resulted in the 

following equation for the prediction line: 

TDS-OD = 0.11 + 0.75*Brix° at 20C (t0(112) = 2.256 and t1(112) = 31.88; both with 𝑝<0.001).  Thus, 

one unit increase in Brix° results in 0.86 unit increase in TDS-OD. The calculated root mean square 

error (RMSE) is 0.04. The results confirmed that refractometers calibrated with a Brix° scale 

cannot be used for direct estimation of coffee TDS% without a correction. Moreover, the results 

were strikingly similar to those obtained from previous studies by Gome (2019),  TDS = 0.85* 

(Brix° + temperature correcting factor) and  Moreno et al ( 2015), TDS% = 0.87*Brix° at 20°C 

(Moreno et al., 2015). The significance of the similarity lies in the different methodologies and 

samples used. Gomez (2019) used Brix° data from secondary sources while Moreno et al (2015) 

utilized reconstituted freeze-dried coffee. This suggests that the chemical components of coffee 

brew responsible refractive index, upon which Brix° is based are not influenced by brewing 

technique. Results are illustrated in Figure 9. 
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Figure 9: shows dependence of TDS-OD (%) of coffee samples on the Brix° with a linear best fitted 

line in red, and confidence range for the mean of TDS-OD (in blue) and prediction range of the 

expected TDS-OD values (in yellow).   

 

4.4 Evaluation of Spectra Coffee beans spectra 

The first step in NIR spectroscopic analysis is evaluation of the raw NIR spectra and its 

associated transformations.  There is a pronounced linear baseline shift in the spectra of the 

roasted coffee samples.  In order to linearise the spectra in accordance with Beer-lamberts law, a 

number of preprocessing techniques were explored. The most effective was a combination of 

multiplicative scatter correction (MSC) and the Savitzky-Golay second derivative. MSC addresses 

additive baseline variations and multiplicative baseline shifts by applying a basic linear univariate 

fit to a standard spectrum to enhance linearity of the spectra (Sørensen et al., 2021). On the other 

hand, SG second derivative diminishes baseline shift by employing a low-degree polynomial fit 

around a given point within a spectrum (Savitzky and Golay, 1964). Thus, the maxima of the 

original spectra become the minima in the transformed spectra (Ozaki and Morisawa, 2021).  

Figure 10 illustrates (a) the diffuse reflection NIR spectra of roasted coffees samples in the 

range of 7000 to 3800 cm-1 and (b) the MSC-SG second derivative transformation in the same 
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range. The spectra are grouped by row sets ranges of TDS-BC and TDS-OD in ranges (1.3-1.5, 1.5-

1.7,1.7 -1.9,1.9-2.1), however, there was not visual distinction between the two, hence only TDS-

BC is illustrated. The high number of compounds found in roasted coffee renders direct inferences 

of functional groups from the wavelength a near impossible task, however, wavelength ranges 

most associated with functional groups common to coffee are annotated on the raw and 

transformed spectra. Assignment of the regions were performed with reference to Table 2. 

A visual inspection of the roasted coffee beans spectra revealed a decreasing trend 

between 7000 to 3800 cm-1. This observation is attributable to the decrease in moisture content 

associated with the roasting process. As noted by Yeretzian et al (2002), moisture constitutes the 

bulk of weight loss encountered during roasting, hence, the rate of moisture loss increases with 

degree of roasting. This observation was confirmed by similar studies (Alessandrini et al., 2008; 

Esteban-Díez et al., 2004b). 

It worth mentioning that Benes et al (2023), explored the influence of roasting degree on 

the NIR spectrum of the roasted coffee beans with same coffee samples and roasting protocol 

used for this study.  The result from her PCA analysis showed a strong correlation between 

roasting degree and NIR spectra of coffee beans. 
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Figure 10 illustrates (a) The diffuse reflectance NIR spectra of roasted coffee beans samples in the 

range of 7000 to 3800cm. (b) the MSC-SG second derivative transformation in the same range.   

The roasting degrees is denoted by light (red), medium (green) and dark (blue) for both. The range 

of TDS-BC coded as (1.3-1.5: blue, 1.5 - 1.7: red, 1.7 - 1.9: red, 1.9 - 2. 1: black). The integers from 

1-14 on both (a) and (b) represent wavenumber regions of interest. 

 

 



52 
 

Table 2: Typical absorption areas of coffee in the near-infrared region (Buratti et al., 2015; da Silva 

Araújo et al., 2021; Ribeiro et al., 2011) 

 

Wavenumber 
[cm-1] 

Molecular vibrations Possible compounds 

8586 2nd overtone of C-H valence vibration, HC=CH lipids 

8409 2nd overtone of C-H valence vibration, CH2 
aliphatic hydrocarbons, 
lipids, caffeine 

8243 2nd overtone of C-H valence vibration, CH3 sucrose 

7343 
combination of C-H valence and C-H deformation 
vibration 

caffeine, sugars 

7020-7006 
1st overtone of O-H groups of phenolic 
compounds; 1st overtone of N-H symmetric 
valence vibration, (R-C=O-NH2) 

polyphenols, 
chlorogenic acids 

6808 1st overtone of O-H valence vibration water, chlorogenic acids 

6369-6256 
1st overtone of N-H valence vibration; 1st overtone 
of O-H valence vibration 

proteins, sugars 

5789 symmetric 1st overtone of C-H valence vibration 
caffeine, chlorogenic 
acids 

5675 symmetric 1st overtone of C-H valence vibration lipids, cellulose 

5557-5417 
O-H combination vibration; combination of 2nd 
overtone of O-H valence and C-H valence vibration 

water, cellulose 

5200-5100 
combination of O-H valence vibration and HOH 
deformation vibration  

water, chlorogenic acids 

5070-5060 
combination of N-H asymmetric valence vibration 
and N-H deformation vibration 

proteins, aromatic 
amines 

4866-4850 
combination of N-H and C=O valence vibration; 
combination of asymmetric N-H valence vibration 
and N-H deformation vibration 

proteins, trigonelline 

4743 
3rd overtone of C=O-O valence vibration; 
combination of O-H deformation and C-O valence 
vibration  

sugars, trigonelline 

4628 
combination of C-H valence vibration/C=O valence 
vibration/ C-H deformation vibrations 

lipids, caffeine 

4400 combination of O-H and C-O valence vibration cellulose, glucose 

4360-4329 2nd overtone of C-H deformation vibration 
proteins, lipids, 
chlorogenic acids 

4246-4232 
2nd overtone of C-H deformation vibration; 
combination of C-H and C-C valence vibration  

lipids, chlorogenic acids 

4020 
2nd overtone of C-H deformation vibration, 
combination of C-H and C-C valence vibration  

aromatic compounds, 
cellulose 
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4.5. Exploratory analysis of Beans Spectra 

Principal component analysis was used to perform exploratory analysis of both raw and 

MSC-SG second derivative spectra of coffee beans (6950-3918cm-1). Model validation was 

performed with a random seven-segment cross-validation. The singular value decomposition 

(SVD) algorithm was used. The optimal number of principal components for the raw data is 2, 

however, due the high explained variance rate (PC1:96%, PC2:3%), only PC1 is presented. For the 

MSC-SG second derivative, the first four principal components describe 96% of the variance in the 

data (PC1:55%, PC2:23%, PC3:14%, PC4:4%). The first three are illustrated in the correlations 

loading plot for clarity. The TDS% were categorized into for groups (1.3-1.5, 1.5-1.7,1.7 -1.9,1.9-

2.1).   

The scores plot of the PCA analysis (Figure 11) for both raw and processed spectra data did 

not yield clear separation for the groups of TDS for both TDS-OD and TDS-BC. The correlations 

loading plot of the processed data was selected for further exploration.  PC1 showed a strong 

positive correlation with the following wavenumber range; 6418 to 6200 cm-1, 5300-5000 cm-1, 

4500 cm-1 and 4000 cm-1. These ranges correspond to the integers 3, 7, 10 and 13 of the MSC-SG 

second derivative spectra (Figure) which are associated with several components of coffee; 3- 

protein and sugars, 7 - water and chlorogenic acids, 10 - lipids and chlorogenic acids and 13-

aromatic compounds. Due the lack of clear sample clusters in the score plot, we cannot assign 

direct meaning to these regions of strong correlation with regard to TDS. The relationship between 

TDS and the NIR spectra was further analyses with PLSR. 
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Figure 11: depicts the scores plots of PC1 and PC2 from PCA analysis of raw spectra of coffee beans 

grouped by a) TDS-OD and b) TDS-BC. The range of both TDS-OD and TDS-BC are (1.3-1.5: blue, 

1.5 - 1.7: red, 1.7 - 1.9: red, 1.9 - 2. 1: black). (c) is the correlation loading plot with PC1:blue. 
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Figure 12:  shows scores plots of PC1 and PC2 from PCA analysis of the MSC-SG second derivative 

roasted beans spectra grouped by (a) The TDS-OD and (b) TDS-BC. The range of both TDS-OD and 

TDS-BC are (1.3-1.5: blue, 1.5 – 1.7: red, 1.7 – 1.9: red, 1.9 – 2. 1: black). (c) is the correlation 

loadings plot with three PCs (PC1: blue, PC2: red, PC3: green) 

 

4.6 Coffee brew spectra 

The unprocessed transflection NIR spectra of the coffee brew was subjected to a number 

of preprocessing techniques, with the combination of MSC and the SG second derivative yielding 

the best results.  Figure 1 illustrates (a) the raw transflection NIR spectra of coffee brew in the 

range of 12500 to 3800 cm-1 and (b) the MSC-SV second derivative transformation in the range of 

12500 – 4000 cm-1. The spectra are grouped by row sets ranges of TDS-BC and TDS-OD in ranges 

(1.3-1.5, 1.5-1.7,1.7 -1.9,1.9-2.1), however, there was not visual distinction between the two, 

hence only TDS-BC is illustrated. The ranges of interest with regard to chemical components most 

associated with coffee are annotated with integers ranging from 1 to 7 on the processed spectra. 

They are as follow; 1- lipids, 2 -water and chlorogenic acid, 3- caffein and chlorogenic acid, 4- 
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water and cellulose, 5 – lipids and caffein, 6 – lipids and chlorogenic acid and 7- aromatic 

compounds and cellulose. The molecular vibrations at these wavenumber ranges are summarised 

in Table. 

The raw spectra of coffee brews are characterised by a relatively flat trend from 12500 to 

8800 cm-1, with peaks at 6900cm-1 and 5235 cm-1 and intense foot at 4000 cm-1. These features 

are typical of the NIR spectra of water as described by Ozaki and Morisawa (2021). The peak at 

4000 cm-1 is due to the fundamental OH stretching modes. Moreover, the band at 5235 cm-1 

corresponds to the combination of the H-O-H antisymmetric stretching mode and the bending 

mode, while the band at 6900 cm-1 corresponds to the combination of the H-O-H symmetric 

stretching mode and the antisymmetric stretching mode (Ozaki et al., 2006). These bands get 

progressively weaker at higher order overtones as the wavelength shortens which is consistent 

with the flat trend observed between 12500 and 8800 cm-1.  

A visual inspection of the spectra did not reveal a distinct pattern in the separation of by TDS% 

groups. Further assessment was carried out by PCA.  
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Figure 13:  illustrates (a) The transflectance NIR spectra of coffee brew samples in the range of 

7000 to 3800cm. (b) the MSC-SG second derivative transformation in the same range. The 

integers from 1-6 on both (a) and (b) represent wavenumber regions of interest. 

(Source: own work) 

 

4.7 Exploratory analysis of Brew Spectra 

Principal component analysis was used to perform exploratory analysis of both raw and 

MSC-SG second derivative spectra of coffee brew in the range of (12500-4000cm-1). As with the 
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coffee beans spectra, model validation was performed with a random seven-segment cross-

validation. The singular value decomposition algorithm was also used. The PCA of the unprocessed 

brew spectra produced four optimal principal components (PC1:74%, PC2:19%, PC3:4% and 

PC4:1%). For the processed spectra, eight principal components were sufficient to account for the 

differences in the decomposed variables. However, the first five PCs account for 95% of the 

variance in the data (PC1:66%, PC2:12%, PC3:9%, PC4:5%, PC5:3%).   

As was observed with the roasted beans spectra, the scores plot of the PCA analysis 

(Figure) for both raw and processed brew spectra data did not yield a clear separation when 

grouped TDS along the four ranges. Further assessment was carried with the correlations loading 

plot of the MSC-SG second derivative transformed brew spectra. Despite the lack of clusters, PC1 

show a strong positive correlation with the wavenumber ranges of 7945-6850 cm-1, 6330-5245 cm-

1. Moreover, PC1 was negatively correlated with the wavenumber ranges 8740-8292 cm-1, 7120-

6665 cm-1, 5677-5330 cm-1.  These wavenumber ranges are broad and encompass functional 

groups associated with caffein, lipids, water, proteins, sugars, among others (Barbin et al., 2014; 

Ribeiro et al., 2011). Also, the ranges overlap at certain points which renders any inferences futile. 

The PCA results confirmed the lack of visual separation observe form the raw and processed brew 

spectra.  Further tests were carried out with PLSR. 
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Figure 14: shows scores plots of PC1 and PC2 from PCA analysis of raw coffee brew spectra 

grouped by (a) The TDS-OD and (b) TDS-BC. The range of both TDS-OD and TDS-BC are (1.3-1.5: 

blue, 1.5 – 1.7: red, 1.7 – 1.9: red, 1.9 – 2. 1: black). (c) is the correlation loadings plot with four 

PCs (PC1: blue, PC2: red, PC3: green, PC4: turquoise) 

(Source: own work) 
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Figure 15: shows scores plots of PC1 and PC2 from PCA analysis of the MSC-SG second derivative 

roasted beans spectra grouped by (a) The TDS-OD and (b) TDS-OD. The range of both TDS-OD and 

TDS-BC are (1.3-1.5: blue, 1.5 - 1.7: red, 1.7 - 1.9: red, 1.9 - 2. 1: black). (c) is the correlation 

loadings plot with four PCs (PC1: blue, PC2: red, PC3: green, PC4: turquoise) 

 

4.8 Results of partial least square regression (PLSR) 

 

4.8.1 Roasted Beans  

PLS models were developed using spectral and reference data from 114 samples, with all 

analyses conducted using averaged values. During the assessment, the spectral range of 7000-

4000cm-1 (comprising 416 variables) was used. Additionally, random, seven-segment cross-

validation was employed for model validation. The PLS regression model for TDS-BC and TDS-OD 
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was performed on both raw and MSC-SG second derivative processed spectra. Further 

combinations of various preprocessing methods like standard normal variate (SNV) and first and 

second SG derivates were explored but yielded poorer models. Only relevant results from MSC-

SV second derivative spectra are summarised in Table. 

Figure illustrates the results from PLS model for MSC-SD second derivative beans spectra. Section 

a) shows the Predicted vs Reference TDS-BC% from the calibration and cross validation 

procedures.  The red and blue trendline represent the regression line for cross validation and 

calibration respectively and the grey trend line is the theoretical trendline line when R2 is 1.  

The strength of PLS regression models are assessed by evaluating  R2/ Q2,  values between above 

0.8 are considered strong while those below  0.5 are considered weak (Wakeling and Morris, 

1993). It must be noted however, that these ranges are often matrix depend, with lower 

thresholds for matrices of high complexity (Sørensen et al., 2021). Based on the R2/ Q2 values we 

can conclude that the PLS regression models are   considerably weak, TDS-BC (R2/ Q2 : 0.12/0.09,  

RMSEC :0.11%, RMSECV: 0.09% ) and TDS-OD ( R2/ Q2 : 0.16/0.06, RMSEC :0.17%, RMSECV: 0.06% 

).  
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Figure 16: illustrates the results of calibration and cross validation graphs from PLS regression 

model of MSC-SD second derivative beans spectra a) the Predicted vs Reference TDS-BC 

regression b) the Predicted vs Reference TDS-OD regression. The red and blue trendline represent 

the cross validation and calibration procedure respectively. The grey trend line is the theoretical 

trendline line when R2 is 1.9 
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Table3: Summary of results from PLS regression for the processed beans and brew spectra 

n is number of reference samples used 

  n is number of reference TDS samples 

 

4.8.2 Coffee brew 

 The PLS models for coffee brew were developed using spectral and reference data from 

114 samples, with all analyses conducted using averaged values. During the assessment, the 

spectral range of 12500 – 4000cm-1 (comprising 1142 variables) was used.  Model validation was 

also performed with random seven-segment cross validation. Both raw and processed coffee 

brew spectra were used and as with the beans, various combinations of preprocessing methods 

did not yield better results. Relevant results from the MSC-SG second derivative spectra are 

summarised in Table. 

Figure 17 depicts the outcomes from the PLS model for MSC-SD second derivative coffee 

brew spectra. Part a) shows the Predicted vs Reference calibration and cross validation regression 

graphs for TDS-BC. Part b) shows the Predicted vs Reference calibration and cross validation 

regression graphs for TDS-OD. The red and blue trendlines represent the regression line for cross 

validation and calibration respectively and the brow trend line is the theoretical trendline line 

when R2 is 1.  

 

 

Sample Parameter Pre-processing n Cross validation 

    
 

𝑅2 

 

𝑄2 

 

RMSEC 

 

RMSCECV 

Roasted bean TDS-BC MSC-SD 114 0.12 0.09 0.14 0.14 

 TDS-OD MSC-SD 114 0.16 0.06 0.13 0.13 

Coffee brew TDS-BC MSC-SD 114 0.04 0 0.14 0.15 

 TDS-OD MSC-SD 114 0.03 0 0.14 0.15 
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The PLS model for the brew was considerably weaker than that of the beans; TDS-BC ( R2/ Q2  : 

0.04/0, RMSEC :0.14%, RMSECV: 0.15% ) and TDS-OD ( R2/ Q2 : 0.03/0, RMSEC :0.14%, RMSECV: 

0.15% ).  

. 

 

 

 

 

 

 

 

 

 

Figure 17: illustrates the results of calibration and cross validation graphs from PLS regression 

model of MSC-SD second derivative brew spectra a) is Predicted vs Reference TDS-BC regression 

b) is the Predicted vs Reference TDS-OD regression. The red and blue trendline represent the 

cross validation and calibration procedure respectively. The grey trend line is the theoretical 

trendline line when R2 is 1. 
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5. SUMMARY AND CONCLUSIONS 

Coffee is the most traded plant commodity in the world. The main drivers behind this 

popularity are consumers who are drawn to its unique sensory attributes and cognitive effects. 

The strength of the coffee brew is a principal sensory quality attribute that is quantified as TDS. 

Traditional methods of assessing TDS require the preparation of coffee brew, which is subject to 

many variations and often leads to inconsistencies across different methods. Secondary analytical 

techniques such as NIR spectroscopy offer the advantage of minimal sample preparation and 

routine analysis. The method has seen extensive applications in the coffee industry. 

In this study, we set out to estimate the TDS of coffee from the NIR spectra of roasted 

coffee beans and brew. Fifty original green coffee beans (48 Coffea arabica and 2 Coffea 

canephora) coffee samples were sourced from four regions: South America, Asia, Central 

America, and Africa. The samples were roasted with a predefined protocol (light: 40 seconds, 

medium: 60 seconds, and dark: 90). This generated 150 samples, which were ground (20g) to a 

median particle size of 600µm. The ground coffee samples were then brewed with a V60 dripper 

using a predefined protocol. The reference TDS of the coffee samples was then determined using 

oven-drying: TDS-OD and a Brix°-calibrated refractometer with a correction factor: TDS-BC. 

The relation between the TDS-OD and Brix° was tested with a linear regression model 

which resulted in R² and R of 0.90 and 0.95 respectively. Furthermore, Repeated Measures 

Analysis of Variance (ANOVA) revealed no significant differences in the mean TDS of both 

reference methods within the three roasting levels; TDS-OD (F (2;74) =2.01, p =0.14); and TDS-BC 

(F (2;74) = 3.11, p= 0.05). The NIR spectra of the roasted beans as well as the brew were collected 

in the range of 12,500 - 3,800 cm⁻¹. The obtained spectra were averaged and pre-processed with 

multiple scatter correction (MSC), and Savitzky-Golay second derivative. 

A visual inspection of both brew and bean spectra grouped by a row set of TDS ranges 

(1.3-1.5, 1.5-1.7, 1.7-1.9, 1.9-2.1) for both TDS-OD and TDS-BC did not reveal any significant 

patterns. Further exploratory assessment by Principal Component Analysis (PCA) of the processed 

spectra resulted in an optimum of 4 PCs for the processed bean spectra (PC1: 55%, PC2: 23%, 

PC3: 14%, PC4: 4%) and 5 PCs for the brew spectra (PC1: 66%, PC2: 12%, PC3: 9%, PC4: 5%, PC5: 
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3%). The scores plot from the PCA for both bean and brew spectra did not reveal significant 

clusters; hence, we could not draw a meaningful conclusion from the correlations loading plot. 

Further assessment with Partial Least Square Regression revealed that the calibration models for 

the transformed bean spectra were not significant for both reference methods; TDS-BC (R2/ Q2: 

0.12/0.09, RMSEC :0.11%, RMSECV: 0.09% ) and TDS-OD ( R2/ Q2 : 0.16/0.06, RMSEC :0.17%, 

RMSECV: 0.06% ). The results from calibration models for the transformed brew spectra were also 

not significant; TDS-BC ( R2/ Q2  : 0.04/0, RMSEC :0.14%, RMSECV: 0.15% ) and TDS-OD ( R2/ Q2 : 

0.03/0, RMSEC :0.14%, RMSECV: 0.15% ). Due to the lack of robustness of the models, we did not 

perform a prediction with test sample set. Thus, the results show that estimating TDS from the 

NIR spectra with the given parameters and experimental design is not ideal. 

Indeed, the results from the PLS for the bean spectra were somewhat promising. The 

experimental design for further studies can employ a roasting protocol that will result in a wider 

range of TDS values. Moreover, since water is implicated for the relatively weaker PLS model of 

the coffee brew, further studies may include a freeze-drying step in the sample preparation 

followed by the collection of the spectra in diffuse reflectance mode.  

The results of this research also allow us to conclude that the existing differences in TDS 

of coffee drinks (prepared with the same brewing method) cannot be purely explained by the 

obvious differences in the chemical composition (i.e. differences that can be explored by NIRS) of 

the corresponding coffee beans. Hence, significant TDS range experienced in the case of the same 

brewing method may however have resulted from the structural differences of the coffee beans. 

Such can be the hardness, the spatial distribution of key components, and other structural 

changes that occur as a result of roasting. It can also be assumed that these may even affect the 

chemical composition of the brew. In other words, a coffee drink with a higher TDS value may 

differ not only in the amount of solute of the same composition, but the differences in quantity 

may also be associated with differences in composition. Further NIRS examination of dried, 

powdered preparations made from such brews may contribute to the understanding of the above 

dilemma. 
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