
  

 
 

          

 

THESIS 

 

 

 

 

 

IBRAHIM KHALID SULEIMAN 

  M.Sc.  Environmental Engineering 

 

 

GÖDÖLLŐ 

 

2023



  

 
 

 

      Hungarian University of Agriculture and Life Science  

Szent István Campus 

       Institute of Environmental Sciences 

       M.Sc. Environmental Engineering 

 

THESIS TITLE: 

INTERANNUAL VARIATION OF WHEAT ECOSYSTEM 

RESPIRATION 

Primary supervisor: Dr. Pintér Krisztina 

Author: Ibrahim Khalid Suleiman 

JUI2I0 

Institute/ Department:  Institute of Agronomy 

 

 GÖDÖLLŐ  

2023 

  



 

ii 
 

TABLE OF CONTENTS 
TABLE OF CONTENTS ............................................................................................................................................ ii 

LIST OF TABLES ...................................................................................................................................................... iii 

LIST OF FIGURES .................................................................................................................................................... iv 

1.0 INTRODUCTION ................................................................................................................................................. 1 

2.0 LITERATURE REVIEW ..................................................................................................................................... 4 

2.1 Methods for Measuring Net Ecosystem Exchange ............................................................................................. 4 

2.2.1 Ecosystem respiration ...................................................................................................................................... 6 

2.2.2 Net primary production ................................................................................................................................... 7 

2.3 Ecosystem Respiration Estimation ...................................................................................................................... 8 

2.3.1 Van't Hoff model .......................................................................................................................................... 8 

2.3.2 Arrhenius model ............................................................................................................................................... 9 

2.3.3 Lloyd and Taylor’s model ............................................................................................................................... 10 

2.4 Soil Respiration ................................................................................................................................................. 10 

2.4.1 Soil respiration measurement ................................................................................................................... 11 

3.0 MATERIALS AND METHODS ........................................................................................................................ 13 

3.1 Study Site ...................................................................................................................................................... 13 

3.2 Description of the Eddy Covariance Method ................................................................................................ 13 

3.3 Dataset .......................................................................................................................................................... 13 

3.4 Temperature Response Curves ..................................................................................................................... 14 

4.0 RESULTS AND DISCUSSION .......................................................................................................................... 16 

4.1 Results ........................................................................................................................................................... 16 

4.1.1 Meteorological conditions ......................................................................................................................... 16 

4.1.2 Comparing the three models based on the three periods ........................................................................ 19 

4.1.3 Seasonal and periodic variation in RE ........................................................................................................ 19 

4.2 Discussion ..................................................................................................................................................... 22 

4.2.1 Ecosystem respiration models comparison with other croplands............................................................. 22 

5.0 CONCLUSION AND RECOMMENDATION ................................................................................................. 27 

6.0 SUMMARY .......................................................................................................................................................... 29 

8. ACKNOWLEDGMENTS ..................................................................................................................................... 30 

9. REFERENCES ...................................................................................................................................................... 31 

APPENDIX ................................................................................................................................................................ 36 

DECLARATION ……………………………………………………………………………………………………………………………………………………… 37 

 

  



 

iii 
 

LIST OF TABLES 

Table 1. Showing the Mean variation of the Meteorological Conditions Across the Periods ..................................... 17 

Table 2. The statistical Features of the relationships between the fitted coefficients and R2 values for all the 3 periods 

in all the 3 years........................................................................................................................................................... 21 

 

  



 

iv 
 

LIST OF FIGURES 

Figure 1. Daily sum of precipitation for the Kartal eddy covariancs site between 2017 and 2022. ............................ 17 
Figure 2. Variations in the daily mean air temperature (Ta, 0C) soil temperature (Ts

0C) at the Kartal eddy covariance 

site between 2017 and 2022. ........................................................................................................................................ 18 
Figure 4. Temperature Response Curves of Period 1 Using Lloyd and Taylor Model. ............................................... 25 
Figure 5. Temperature Response Curves of Period 5 Using Lloyd and Taylor Model. ............................................... 25 
Figure 6. Temperature Response Curves of Period 9 Using Lloyd and Taylor Model. ............................................... 25 
Figure 7. Half hourly fluxes of CO2 (NEE) for the three selected growing periods at the Kartal eddy covariance site.

 ...................................................................................................................................................................................... 26 
Figure 8. Temperature Response Curves of the Three Periods Using Van’t Hoff Model. .......................................... 36 
Figure 9. Temperature Response Curves of the Three Periods Using Arrhenius Model. ............................................ 37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

1 
 

1.0 INTRODUCTION 

The term "global carbon budget" refers to an assessment of the amount of carbon dioxide (CO2) 

emissions caused by both human activities and natural sources, as well as how they are 

distributed between the atmosphere, oceans, and land. Carbon budgets essentially measure the 

flow of carbon between different parts of the Earth's system (Le Quéré et al., 2018). These 

elements include terrestrial ecosystems, oceans, and the atmosphere. Therefore, there is a dire 

need to understand the global carbon cycle which will help to develop climate policies and future 

projections for climate change. Since the beginning of the Industrial Revolution, there has been a 

significant rise in atmospheric CO2 levels, increasing from approximately 277 parts per million 

(ppm) in 1750 to 417 ppm in 2022, Lan et al., 2023. The primary cause for the high levels of CO2 

in the atmosphere prior to the industrial era was the initial discharge of carbon emissions due to 

land-use alteration activities and deforestation. (Ciais et al., 2013, Friedlingstein et al., 2020).  

Greenhouse gases are gases that trap heat in the Earth's atmosphere, leading to the phenomenon 

known as the greenhouse effect. These gases include carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O), fluorinated gases, and ozone (O3). The concentration of most GHGs is 

increasing because of anthropogenic emissions, and the high GHG concentrations causes the 

global warming. Human activities, such as burning fossil fuels, deforestation, and industrial 

processes, have significantly increased the concentration of greenhouse gases in the atmosphere, 

leading to global warming and climate change. The burning of fossil fuels is the primary source 

of CO2 emissions, while agriculture and livestock farming are the main sources of CH4 and N2O 

emissions (Pachauri et al., 2014). The relationship between total emissions and global 

temperature change brings up new possibilities for climate mitigation strategies (Matthews et al., 

2012) and for forecasting the regional climate consequences linked to a particular emission route.  

Climate change refers to the alteration of long-term temperatures and weather patterns, which can 

occur naturally as a result of changes in the sun's activity or significant volcanic eruptions. 

However, since the 1800s, climate change has primarily been caused by human activities such 

deforestation, extensive cultivation, and burning of fossil fuels like oil and gas due to high energy 

demand. The rise in greenhouse gases, such as CO2, is contributing to the phenomenon of climate 

change that we are currently experiencing. 
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In response to the growing concern over the climatic effects of greenhouse gas (GHG) emissions, 

efforts are being conducted globally to increase carbon sequestration and decrease CO2 emissions 

(Sierra et al., 2013). Agricultural croplands are able to capture and store CO2 and other 

greenhouse gases (GHGs), which significantly reduces the potential negative effects of climate 

change in the future. Changing farming practices has a notable effect on reducing global GHG 

emissions, as largely recognized by UNEP in 2013. Hence, more management practices should 

be adopted to decrease CO2 emissions and increase carbon sequestration (Lal, 2011). The 

estimation of the net carbon sequestration potential is difficult because of the numerous linkages 

and vast regional variability in cropping systems and management practices (Hutchinson et al., 

2007). The eddy covariance approach has become the most crucial tool for estimating the direct 

estimates of mass and energy exchange between vegetation surfaces and the atmosphere. When 

using the eddy covariance approach, fast-response instruments of 10–20 Hz are installed above 

plant canopies, and the fluxes are computed as the covariance of the vertical velocity fluctuations 

and the fluctuations of various scalars such as CO2, water vapor, and temperature. This method 

makes it possible to quantify the net exchange of CO2 directly and without causing any damage 

to the vegetation. This net exchange is the so-called Net Ecosystem Exchange (NEE) which is the 

balance between the amount of carbon dioxide (CO2) absorbed by a given ecosystem through 

photosynthesis, and the amount of CO2 released by that ecosystem through respiration. Moreover, 

the evapotranspiration (loss of water from land and plants) and sensible heat flux (transfer of heat 

due to temperature differences) in an ecosystem can also be measured by eddy covariance towers. 

This method can provide estimates of daily, monthly, or yearly carbon exchange by the 

ecosystem. Furthermore, eddy covariance data is important for verifying and adjusting models 

that quantify carbon balance at regional and canopy levels. Nonetheless, this approach has 

limitations such as the high costs of setting it up, requirement of uniform and flat vegetation at 

the site, and challenges in measuring fluxes accurately during low wind conditions. Advantages 

include measurements that are nearly continuous and spatial averaging over 10-100 hectares and 

measurements have a negligible effect on the systems that were studied. Data missing due to the 

influence of weather and equipment is a common feature of eddy covariance measurements. 

Accurate estimation and understanding of the regional to global scale carbon cycling of croplands 

are essential for developing effective policies and management practices that can contribute to the 

stabilization of atmospheric CO2 concentrations (Glenn et al., 2010). According to estimates, 



 

3 
 

croplands account for the greatest amount of carbon that Europe loses to the atmosphere each 

year, however, this estimate is the least certain of any land use type (Janssens et al., 2003). 

According to Janssens et al. (2003), croplands in Europe that extend as far east as the Urals lose 

roughly 300 Mt of carbon annually. Cropland soil carbon loss figures are highly uncertain 

(Janssens et al., 2003) and there is clear scope to reduce the uncertainty surrounding it by 

ensuring accurate estimation of the NEE of the cropland. Therefore, precise measurements of 

carbon emissions from numerous cropland ecosystems are required to find the most effective 

methods over a long period of time. There is limited information regarding the estimation of 

nighttime ecosystem respiration (RE) in croplands by using the eddy covariance setup. At 

present, there are limited relevant research studies that analyze and depict the extended-term 

trends of ecosystem respiration in croplands during various growing seasons. The main objective 

of this study is to determine the interannual variation patterns in the RE of croplands during the 

growing season by using Eddy Covariance The goals are to assess how the interannual 

differences in temperature affects ecosystem respiration (RE). Previous research had shed light 

on the underlying processes causing fluctuation in agroecosystem RE. The research will provide 

insight into the interannual variation of RE and also contribute to the development of accurate 

models that will forecast long-term trends in greenhouse gas emissions. 
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2.0 LITERATURE REVIEW 

2.1 Methods for Measuring Net Ecosystem Exchange 

Eddy covariance and Bowen-ratio/energy balance (BREB) are the two approaches for estimating 

NEE that are most frequently used. The fundamental idea behind these micrometeorological 

techniques is that air parcels are displaced from the soil surface to the measurement height by 

eddies, which then move gas from the soil surface. The Eddy-covariance method calculates the 

net rate of CO2 exchange between a plant canopy and the atmosphere by analyzing the 

relationship between the fluctuations of the vertical wind speed and fluctuations in the CO2 

mixing ratio. This technique determines the covariance between these variables. (Baldocchi et al., 

2003. The BREB method employs a surface energy balance to determine the net CO2 fluxes by 

utilizing flux-gradient associations among water vapor, CO2, and heat. This method assumes that 

the turbulent exchange coefficients for sensible heat, latent heat, and momentum are the same, as 

indicated by Gilmanov et al. in 2005. However, the accuracy of the CO2 flux measurements 

obtained through the BREB technique can be affected by the assumed equivalence of the 

turbulent exchange coefficients and the measurement errors associated with input variables like 

net radiation, temperature, and humidity gradients. Compared to chamber-based techniques, non-

intrusive micrometeorological approaches like eddy covariance and BREB systems have less 

impact on the microenvironments of the soil surface (Dugas, 1993). According to Baldocchi 

(1997), those methods have the ability to observe the continuous release of CO2 for extended 

durations and cover vast surface areas while considering the irregularity of the surroundings due 

to natural turbulence. However, for these techniques to work effectively, certain conditions must 

be met, such as having a wide and uniform area upwind and maintaining consistent atmospheric 

conditions (Baldocchi and Meyers,1991). According to Jensen (1996), micrometeorological 

techniques may not be suitable for measuring small-scale phenomena because of their expensive 

implementation costs. 

2.2 Temperature Sensitivity of Ecosystem Respiration 

The temperature has a significant impact on ecosystem respiration, which is a crucial component 

of the terrestrial carbon cycle on a worldwide scale. According to Sierra (2011), temperature 

sensitivity is the rate at which a process changes as the temperature rises or falls while other 

factors remain constant. The time at which the growth component is prominent is determined by 

phenology and growth trends (Ceschia et al., 2002). Thus, seasonal fluctuations in 
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photosynthesis, mobilization and utilization of stored carbohydrates, and differences in the 

physiological growth stages of plant organs are the causes of the varied responses of soil 

respiration and ecosystem respiration to environmental factors (Jassal et al., 2007). Ecosystem 

respiration can be partitioned into above-ground autotrophic respiration (Raa) from plant canopy 

and soil respiration (Rs), or it can be divided into heterotrophic respiration (Rh) from microbial 

decomposition of residues and soil organic matter and autotrophic respiration (Ra) from plants. 

Soil respiration can be also separated into Rh and below-ground autotrophic respiration (Rab) 

from plant roots. Yiqi and Xuhui (2010) stated that soil respiration involves the interdependence 

of respiration, microbial breakdown of litter and organic soil elements, and fauna, all of which 

contribute to the removal of carbon dioxide from the soil through ecological processes. Changes 

in temperature and soil water content had a greater impact on ecosystem respiration than on soil 

respiration (Jassal et al., 2007). 

In terrestrial ecosystems, the temperature sensitivity of ecosystem respiration (Q) is a key 

measure for establishing a causal relationship between respiratory carbon flux and global 

warming (Reichstein et al., 2007). Earth system models (ESMs) frequently produce carbon 

dynamics using a constant Q value of 2 for ER (Friedlingstein et al., 2006). Nevertheless, using 

the FLUXNET database created from a global collection of eddy covariance CO2 flux datasets, a 

mean Q value of 1.6 for ER was generated (Mahecha et al., 2010). Furthermore, there is 

mounting evidence that Q of ER is not constant but rather changes with changes in air 

temperature, precipitation, atmospheric CO2, atmospheric nitrogen deposition, precipitation 

(Araki et al., 2017; Li et al., 2019), plant phenology and biomass (Ceschia et al., 2002). Besides 

that, disturbance activities including harvest, fire, bark beetle epidemic, wind throw, insect 

defoliation, fungal assault, and droughts have a significant impact on the overall Q of ER because 

they change the amount of coarse woody debris (CWD) and leaf area (Williams et al., 2016). 

Hence, the ability of process-based models to precisely simulate the size of climate-carbon 

feedback is limited by the erroneous parameterization in the Q of ER (Tang et al., 2008). Even 

though the eddy covariance technique has made it possible to detect ER continuously, tower-

based flux measurements do not directly reveal the component fluxes (Tang et al., 2008). As a 

result, comparing Q10 in the key ER components is essential for decreasing model uncertainties 

and correctly forecasting carbon dynamics (Chi et al.,2020).  
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Several types of investigations have been carried out to estimate the carbon balance in the 

ecosystem, although they have mainly focused on a single vegetation type that is typically 

homogeneous in nature. Various crops like wheat, maize, soybeans, paddy rice, sugar beet, and 

potatoes have been studied for their RE patterns using micrometeorology in previous research by 

different authors such as Schmidt et al. (2012), Du and Liu (2013), Kutsch et al. (2010), Saito et 

al. (2005), and Aubinet et al. (2009). Recent research has indicated that the annual RE differs 

depending on factors like the type of crop, geographical region, climate zone, and farming 

practices employed, as reported by Chen et al. (2019). The variability in RE from year to year in 

agricultural ecosystems is affected by factors such as temperature, precipitation, soil moisture, 

and plant growth, as observed by Guo et al. (2019). The soil temperature directly affects the RE, 

provided that the soil moisture level is optimal, according to research conducted by Chang et al. 

(2016) and Flanagan and Johnson (2005). 

2.2 Components of Net Ecosystem Exchange 

Net Ecosystem Exchange (NEE) is the difference between the total amount of CO2 produced by 

all respiration processes combined (RE) and the carbon that is taken in by photosynthesis. GPP is 

the total carbon uptake by photosynthesis by plants, whereas RE is the total carbon excretion by 

all species' respiration processes. The NEE of CO2 between ecosystems and the atmosphere is 

measured using the eddy covariance (EC) technique. A crucial first step to comprehending the 

underlying mechanisms restricting ecosystem function is the estimation of GPP and RE. 

Furthermore, EC estimates of GPP and RE are helpful for modeling, supporting process-based 

models, parameterization and validation, data assimilation, and vegetation attributes retrieval by 

model inversion (van der Tol, & Frankenberg, 2019; Pacheco-Labrador et al., 2019), as well as 

estimates of photosynthesis based on remote sensing (e.g., Verrelst et al., 2016). 

2.2.1 Ecosystem respiration 

Ecosystem respiration (RE) is a substantial and unique component of carbon cycling that will be 

crucial in determining how terrestrial ecosystems react to climate change (Valentini et al., 2000). 

Ecosystem respiration (RE) is crucial for managing ecosystem carbon balances and regulating 

atmospheric CO2 levels (Valentini et al., 2000). Ecosystem respiration (RE) is frequently 

represented as a combined variable directly related to temperature (Lloyd & Taylor, 1994; 

Enquist et al., 2003). For a better understanding of the dynamics of the ecosystem’s carbon 

balance, it is crucial to quantify components of RE. Moreover, partitioning RE into its above-
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ground (canopy respiration) and below-ground (soil respiration) components is necessary to 

comprehend the reasons for RE seasonal and interannual fluctuation. Among all, temperature, 

precipitation, and substrate availability can all affect how the above- and below-ground 

components of RE respond (Ekblad et al., 2005). RE encompasses plant autotrophic respiration 

both above and below ground, as well as the respiration of heterotrophic species (Xu et al., 2001). 

According to Trumbore (2006), each of these components responds differently to environmental 

conditions and ecological traits. Gaumont-Guay et al. (2008) suggest that microbial respiration is 

significantly influenced by certain environmental factors such as the temperature and moisture 

content of the soil. Due to the intricacy of RE, it is very difficult to forecast how global change 

will affect ecosystem functioning. As a result, it is expected that the relationship between Rs and 

RE would change periodically, and this change may shed light on how ecosystems react to 

changing weather and climatic conditions (kirschbaum, 2019). 

2.2.2 Net primary production  

Net primary production (NPP) refers to the annual productivity of plants within an ecosystem, 

and it is determined by the balance between the carbon assimilated by photosynthesis and the 

carbon lost through plant respiration. NPP takes into account the energy that autotrophs absorb 

and their respiration. The gross primary production (GPP) represents the amount of CO2 that an 

ecosystem grossly absorbs and utilizes for photosynthesis. About half of the photosynthesis from 

GPP is consumed by autotrophic respiration (Ra), which is necessary for synthesizing new plant 

tissues and maintaining live tissues. NPP is the amount of photosynthates that remain after 

respiration and are available for other processes. This can be expressed in terms of GPP and Ra 

as follows. 

GPP = NPP + Ra 

It can be difficult to accurately measure the total Net Primary Productivity (NPP) due to the loss 

of organic material through various processes, such as emission of volatile organic compounds 

(more common in forests than croplands), exudation from roots, and carbon transfer to root 

symbionts. The majority of NPP is used to produce above and below-ground biomass, but 

quantifying the fractions associated with exudation and volatile losses is challenging because the 

biomass may have been harvested or lost to pests/herbivores at the time of measurement. 

Corrections must be made for this lost biomass when calculating NPP from measured biomass. 

Additionally, estimating root turnover is challenging as it occurs year-round and varies depending 
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on vegetation type. Therefore, NPP estimations are uncertain. Every year, a portion of the 

generated biomass is added to the soil's litter and carbon pools, each with different residence 

times. 

The carbon stored in certain areas is susceptible to decay caused by microorganisms, a process 

called heterotrophic respiration (Rh). Rh includes the breakdown of current-year plant material 

and previously accumulated organic matter that has been in the environment for decades, 

centuries, or even millennia. The contrast between the rate of Net Primary Productivity (NPP) 

and Rh is referred to as Net Ecosystem Productivity (NEP) (Ciais et al., 2010). Ecosystem 

respiration (RE) encompasses Rh and another process called autotrophic respiration (Ra), with 

soil respiration being a component of RE. Thus, in practical terms, NEP can be determined by 

subtracting RE from Gross Primary Productivity (GPP). 

2.3 Ecosystem Respiration Estimation 

According to Pries et al. (2017), ecosystem respiration comprises both autotrophic and 

heterotrophic respiration. The decomposition of plant roots and aerial parts by soil organisms is 

the primary cause of heterotrophic respiration, whereas autotrophic respiration pertains to 

respiration by plants' roots and aerial parts. The net ecosystem exchange (NEE) is the amount of 

carbon measured by the eddy covariance system, obtained by adding gross ecosystem primary 

productivity (GPP) and ecosystem respiration (RE). Since photosynthesis only takes place during 

daylight hours, gross primary productivity (GPP) is nonexistent at night. As a result, the net 

ecosystem exchange (NEE) during the night is equivalent to the ecosystem respiration. The flux 

of daytime respiration or the intercept of the day flux response to light flux can be determined by 

calculating the total ecosystem respiration from nighttime eddy covariance fluxes using a 

temperature and soil water response model. The eddy covariance approach is reliable and energy-

efficient enough to be used for years at a time, and it can measure the net exchange of CO2 over 

typical areas of several hundred square meters (Baldocchi, 2003). To estimate the daily and 

yearly RE values for ecosystems, respiratory models require several specified model parameters. 

There are three models that are frequently used to measure carbon emissions from ecosystems: 

the Van't Hoff model, the Arrhenius model, and the Lloyd and Taylor model. 

2.3.1 Van't Hoff model 

The Van't Hoff model written in the form of the Van't Hoff equation, is a thermodynamic 

equation that describes the relationship between temperature and equilibrium constant for a 
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chemical reaction. In 1884, a chemist named Jacobus Henricus Van't Hoff, who hailed from the 

Netherlands, was the first to suggest this concept. The equation is as follows: 

ln (K2/K1) = ΔH/R [(1/T1) - (1/T2)] 

where K1 and K2 are the equilibrium constants at temperatures T1 and T2 respectively, ΔH is the 

enthalpy change of the reaction, R is the gas constant, and ln denotes the natural logarithm. 

The equation shows that the natural logarithm of the ratio of equilibrium constants for a reaction 

is proportional to the inverse of temperature. The constant of proportionality is ΔH/R, which 

represents the enthalpy change of the reaction over the gas constant. The Van't Hoff model can be 

employed to approximate the impact of temperature on chemical reactions and to ascertain the 

enthalpy alteration of a reaction based on temperature information. Law (2021) explains that the 

equation is obtained by applying the Gibbs free energy equation, which elucidates the correlation 

among temperature, enthalpy, entropy, and Gibbs free energy. 

Van't Hoff equation also links changes in a chemical reaction's equilibrium constant (Keq) to 

changes in temperature, T, given the reaction's standard enthalpy change, rH. The Van't Hoff and 

Arrhenius equations have been extensively utilized to forecast how respiration and decomposition 

rates will alter as temperature changes (Atkins and Paula, 2010). The Van't Hoff rule states 

(Van’t Hoff, 1884) assumes that the reaction's enthalpy change remains constant over the 

temperature range studied, which is not always the case. Additionally, the equation applies only 

to reactions at equilibrium and cannot be used to predict reaction rates. For instance, every 10° C, 

the rate of biological reactions doubles. It can be expressed as follows; 

𝑅𝐸 = 𝑅𝐸refexp⁡ (𝐵(𝑇𝑠 − 𝑇𝑟𝑒𝑓)) 

2.3.2 Arrhenius model 

The Arrhenius equation describes many physical and chemical reactions, the relationship 

between reaction rate and temperature (Koerner et al. 1992) as given below 

k = k0e
−(E/RT) 

Where k is the kinetic reaction rate, k0 is rate constant, E is the activation energy, R is the 

universal gas constant and T is the absolute temperature. By evaluating the logarithm of both 

sides of the above equation, a more useful form of the relationship is derived. 

ln⁡(𝑘) = ln⁡(𝑘0) − E/RT 
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Time is not specifically included as a variable in the equation, despite the fact that it describes the 

rate of reaction. As temperature increases, the exponential factor e^(-Ea/RT) becomes smaller, 

and the rate constant k becomes larger. This means that the reaction proceeds faster at higher 

temperatures. The Arrhenius model is useful for predicting how the rate of a chemical reaction 

will change as the temperature changes, and it has many practical applications, such as in the 

design of chemical reactors and in the study of reaction kinetics. 

2.3.3 Lloyd and Taylor’s model 

The Lloyd-Taylor function explains that the relationship between temperature and respiration is a 

nonlinear one, where the logarithm of respiration increases with temperature but at a decreasing 

rate. This is because the impact of temperature on respiration is greater at lower temperatures and 

diminishes as temperature increases. When the temperature is exceptionally high, the respiration 

rate reaches a plateau, and the Q10 value decreases. To compare statistical models, the Lloyd-

Taylor function was fitted using non-linear least squares regression with the dependent variable 

being the respiration rate. The starting values for the parameters a and b were obtained through 

linear regression with 1/T as the independent variable. The parameter c was set to zero to initiate 

the non-linear fitting process. 

𝑅𝐸 = 𝑅𝐸ref exp⁡ [𝐸0 (
1

𝑇ref − 𝑇0
−

1

𝑇s − 𝑇0
)] 

where Ts refers to the temperature of a surface in degrees Celsius. REref is the rate of a 

specific process at a reference temperature (Tref) of 10°C. B is a parameter used in a 

mathematical model to describe the relationship between two variables. Ea represents the 

amount of energy required for a reaction to occur in joules per mole. R is the gas constant, 

which is equal to 8.314 joules per Kelvin per mole. E0 is a parameter linked with the 

activation energy, which affects how sensitive the rate of the process is to temperature. T0 is a 

fixed parameter representing a constant temperature value of -46.02°C by Lloyd and Taylor 

(1994). 

2.4 Soil Respiration 

Soil respiration refers to the release of CO2 by living organisms in the soil, including plants roots, 

microorganisms, and soil animals, as they carry out their biological functions. The standard 

measure of soil respiration is µmol CO2 m-2 s-1. Unlike total ecosystem respiration, which 

includes the respiration of aboveground parts such as leaves, trunks, branches, twigs, and dead 
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wood, soil respiration accounts for the respiration of both soil microorganisms and roots. In 

temperate and boreal regions, there may be discrepancies in seasonal patterns between 

aboveground and belowground processes, as changes in soil temperature lag behind changes in 

air temperature. In certain environments, plants may have access to deep soil water, which can 

protect them from drought stress compared to heterotrophs located closer to the soil surface. The 

ratio of Rs/RE can change periodically, and this variability can provide insight into how 

ecosystems respond to fluctuations in weather and climate conditions. Soil respiration is often as 

important as or even more significant than aboveground respiration in ecosystems, and it 

determines whether the ecosystem acts as a source or sink of CO2. The emission of CO2 from the 

soil can increase due to global warming, which could lead to a faster acceleration of climate 

change. Soil respiration research since the 1990s has focused on how it affects carbon storage in 

terrestrial ecosystems and how it reacts to alterations in land use and the surroundings. 

2.4.1 Soil respiration measurement 

Soil respiration is usually measured using soil respiration chambers. Soil respiration chambers are 

essentially enclosed containers that are placed over a section of soil, allowing for the 

measurement of CO2 flux between the soil and the atmosphere. The chambers are left in place for 

a period of time, during which the CO2 concentration inside the chamber increases as the soil 

respires. The rate of CO2 accumulation inside the chamber is measured over time, usually by 

taking gas samples at regular intervals and analysing them using a gas analyzer. By measuring 

the rate of CO2 flux between the soil and the atmosphere, soil respiration chambers allow 

researchers to estimate the total amount of carbon that is being respired by the soil ecosystem. 

This data holds significance in comprehending the function of soils in the worldwide carbon 

cycle, and in anticipating how soils will react to modifications in climate and land use (Davidson 

and Janssens, 2006). By putting soil respiration chambers on bare soil patches, we can measure 

the amount of CO2 released by the soil alone, which is soil respiration.  

 Indirect techniques such as measuring NEE or ecosystem respiration can provide useful 

information about soil respiration, which is an important component of the carbon cycle and can 

help us understand the role of soil in regulating atmospheric CO2 concentrations (Baldocchi et al., 

2003). It remains highly difficult to partition the measured NEE into soil respiration, respiration 

by plants above ground, and photosynthesis occurring in the canopy while preserving the original 

meaning. Eddy flux measurements taken at night above the canopy or analysis of daylight 
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readings can be used to determine ecosystem respiration (Falge et al., 2000). It is impossible to 

differentiate between respiration from soil and respiration from aboveground plant parts without 

empirical estimations or additional observations. To estimate the soil CO2 efflux over a larger 

area, the eddy-covariance flux can be correlated with chamber data. Other indirect methods for 

determining soil respiration include carbon balance based on the litterfall-soil respiration ratio, 

nocturnal observations of CO2 concentration profiles in the planetary boundary layer, and 

lagrangian analysis of canopy carbon source and sink profiles. An example of this is the 

Lagrangian dispersion model used by Katul et al. (1997) to estimate soil respiration by analyzing 

canopy CO2 profiles and determining that near-ground air was a source of CO2. 
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3.0 MATERIALS AND METHODS 

3.1 Study Site 

Crop Net Ecosystem Exchange (NEE) is measured at the premises of Gödöllői Tangazdaság Zrt 

by an eddy covariance station built by the Department of Plant Physiology and Plant Ecology, 

Institute of Agronomy, Hungarian University of Agriculture and Life Sciences. The study site is 

at the edge of Kartal (47.658° N, 19.532° E, 153 m a.s.l.) and it is in operation since October 

2017.  

3.2 Description of the Eddy Covariance Method 

The eddy covariance technique is measuring the net amount of CO2 crossing the measurement 

plane, i.e., going toward the surface and coming from the surface. This net amount is the Net 

Ecosystem Exchange (NEE), which is the resultant CO2 taken up by assimilation and released by 

respiration by the plants. The technique provides a half-hourly NEE of assimilation and 

respiration output. In addition, a number of environmental factors (such as temperature, 

precipitation, global and photosynthetic active radiation, soil water content, etc.) are recorded at 

both locations on an hourly basis. The eddy-covariance tower is equipped with a CSAT3 a sonic 

anemometer, which can measure the wind speed 10 times per second, and a LI-7500 gas 

analyzer, which can simultaneously measure the air's water vapor and carbon dioxide content. 

The temperature, precipitation, global and photosynthetic active radiation, and soil water content 

were measured using a 105T Thermocouple probe, ARG 100 Tipping Bucket Rain gauges, CM3 

Kipp and Zonen PyranometerSKP215 Quantum Sensor, and CS615 Water Content Reflectometer 

respectively. 

3.3 Dataset 

Data were collected from the five years long dataset periods, where the wheat was grown at the 

study site, and were selected and used for the present work. The periods are presented below: 

• Period 1: 2017-10-13 - 2019-06-19, 

• Period 5: 2019-11-17 - 2020-07-01,  

• Period 9: 2021-11-08 - 2022-06-17. 

The used data include the Temperature of air (Tair), Soil Temperature (Ts), Short wave incoming 

radiation (SWIN), Soil Water Content (SWC), precipitation, and Net Ecosystem Exchange (NEE) 

recorded as cflux.  
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3.4 Temperature Response Curves 

In each growing season, the data set was split into three subperiods as follows; 

• October-February: normally referred to as the dormant period or no intensive growth. 

• March-April: intensive growth with increasing growing intensity that gives rise to an 

increasing trend in cflux. 

• May-June: intensive growth but with decreasing growing intensity that results in 

decreasing trend in cflux. 

The R-Stat software was used to analyze the eddy covariance data. Data in each subperiod was 

filtered by “The Inter Quartile Range (IQR) criterion, which states that data points that fall below 

q0.25-1.5⋅IQR or above q0.75+1.5⋅IQR are considered outliers. The first quartile (q0.25), and the 

third quartile (q0.75), are used to calculate the IQR, which is the difference between them. The 

IQR criterion is important in the detection and removal of outliers. 

Temperature response curves were fitted to nighttime data, on a half-hourly basis when the global 

radiation (SWIN) was below 5 W m-2 were considered as nighttime. To estimate the daily 

response of RE to temperature, non-linear fitting algorithms were used to fit the different model 

parameters of the Van't Hoff model, Arrhenius model, and Lloyd and Taylor models as follows; 

 

𝑅𝐸 = 𝑅𝐸𝑟𝑒𝑓𝑒𝑥𝑝⁡ (𝐵(𝑇𝑠 − 𝑇𝑟𝑒𝑓))  (1) 

 

𝑅𝐸 = 𝑅𝐸ref 𝑒𝑥𝑝⁡ [(
𝐸𝑎

𝑅
) (

1

𝑇ref 
−

1

𝑇𝑠
)]  (2) 

 

𝑅𝐸 = 𝑅𝐸ref 𝑒𝑥𝑝⁡ [𝐸0 (
1

𝑇ref −𝑇0
−

1

𝑇𝑠−𝑇0
)] (3) 

 

where Ts refers to the temperature of a surface in degrees Celsius. REref is the rate of a 

specific process at a reference temperature (Tref) of 10°C. B is a parameter used in a 

mathematical model to describe the relationship between two variables. Ea represents the 

amount of energy required for a reaction to occur in joules per mole. R is the gas constant, 

which is equal to 8.314 joules per Kelvin per mole. E0 is a parameter linked with the 

activation energy, which affects how sensitive the rate of the process is to temperature. T0 is a 
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fixed parameter representing a constant temperature value of -46.02°C by Lloyd and Taylor 

(1994). 
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4.0 RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Meteorological conditions 

Figure 1 shows the annual and seasonal fluctuations in the daily mean air temperature (Ta), daily 

mean soil temperature (Ts), the daily sum of precipitation, and the daily mean soil water content 

(Ws) at a 5 cm depth at the site. In most years, the highest and lowest values of Ta and Ts were 

observed between July and August and between November and January, respectively. Figure 2 

illustrates that the variations in Ta and Ts throughout the seasons follow a bell-shaped curve with 

a single peak. 

During the years 2017-2022, the daily mean air and soil temperature, ranged from 5.3°C to 

19.9°C and 2.8°C to 18.9°C, respectively. The coldest temperatures were typically observed 

between October and February, followed by March and April, with the warmest temperatures 

occurring in May and June in each of the three periods. Additionally, during the winter periods, 

the air temperature was slightly lower than the soil temperature. In Period 5, the mean air 

temperature in March-April and May-June was the lowest, while Period 9 was relatively warmer 

and drier. Finally, Figure 2 shows that in Period 1, the lowest and highest mean soil temperatures 

were observed during the October-February and May-June subperiods, respectively. 

The average annual precipitation sum for the whole period (2017-2022) was 534 mm, above the 

10-year average (2011-2020) of a nearby meteorological station. The annual sum of precipitation 

was highest in 2019 with 643 mm and lowest in 2021 with 435 mm as a result of drought in that 

year. The amount of precipitation in March-April and May-June was lowest in period 5 and 

period 9 respectively while the highest was observed in October-February of period 1 which is 

moist and cooler (Figure 1). 

The soil water content (Ws) also varies across the three periods but follows a regular pattern as 

the Ws decreases from winter to summer for all three periods. It ranges from 20.0 m3m-3 to 36.68 

m3m-3 at the site and. The daily mean Ws has its maximum value during winter and minimum 

value in the summer as shown in Figure 3. The mean Ws of March-April and May-June subperiod 

was lowest in period 9, while the highest occurs in October-February of period 1. 
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TABLE 1. SHOWING THE MEAN VARIATION OF THE METEOROLOGICAL CONDITIONS 

ACROSS THE PERIODS. 

  mean air temp. mean soil temp. mean SWC Sum of prec. 

Period 1 Oct _ Febr 5.32 2.77 36.68 172.8 

 March-Apr 8.95 8.63 34.80 73.6 

 May-June 19.67 20.14 30.54 160.4 

Period 5 Oct _ Febr 9.29 4.80 27.00 217.6 

 March-Apr 3.37 9.21 29.47 19.3 

 May-June 17.33 18.10 25.88 152.0 

Period 9 Oct _ Febr 4.37 5.67 24.95 112.7 

 March-Apr 7.25 7.55 28.27 71.1 

 May-June 19.86 18.89 20.02 69.0 

 

 

 

 

Figure 1. Daily sum of precipitation for the Kartal eddy covariancs site between 2017 and 2022. 
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Figure 2. Variations in the daily mean air temperature (Ta, 
0C) soil temperature (Ts

0C) at the 

Kartal eddy covariance site between 2017 and 2022. 

 

 

 

 

 

 

 

 

Figure 3. Variations in the daily mean soil water content (Ws) at the Kartal eddy covariance site 

between 2017 and 2022. 



 

19 
 

4.1.2 Comparing the three models based on the three periods 

The Van't Hoff, Arrhenius, and Lloyd and Taylor models were used to calculate the RE for the 

three time periods. In order to choose the most accurate model, the application of each model 

varies depending on the criteria and parameters related to it. To evaluate the accuracy of the 

models, nighttime data (measured) from the three time periods 2017/2018, 2019/2020, and 

2021/2022 were used. Table 2 displays the statistical details of the three models' correlations 

between parameters and correlation coefficients. It shows that different periods and models' 

nonlinear regression equations for the parameters and correlation coefficients produced various 

temperature response curves and correlation coefficients (R2). The most precise model for 

determining Re in the crop fields during the three selected growing seasons was the Lloyd and 

Taylor model. This model displayed the strongest sensitivity to temperature and had the highest 

regression coefficient. 

4.1.3 Seasonal and periodic variation in RE 

The Van't Hoff, Arrhenius, and Lloyd and Taylor models were used to estimate the seasonal 

changes in ecosystem respiration (RE) during three different periods of the year. Among these 

models, the Lloyd and Taylor model was found to be the most significant, as shown in Figures 4, 

5, and 6. In each growing season, the data set were further splitted into three subperiods namely 

October-February, March-April, and May-June. During the subperiods of the wheat growing 

season around October-February, the CO2 release was still considerable even though there might 

have been plants, although small growing in the field (Figure 7). The decrease in RE values during 

winter could be attributed to the low temperature, which hinders the breakdown of soil organic 

matter, and a decrease in aboveground biomass due to slow growth. However, as winter turned to 

spring and winter wheat began to grow rapidly, there was an increase in RE, with the most 

significant increase occurring in March due to rising temperatures and plant growth. RE levels 

usually peaked in late April in wheat fields but declined as the crop matured. In May and June, 

CO2 emissions were likely caused by the decomposition of soil organic matter due to warm soil 

conditions as temperatures increased towards summer. Therefore, the primary contributors to RE 

during this period were the decomposition of soil organic carbon and root respiration of the 

wheat. 

The Van’t Hoff Model as shown in Figure 8 was used to test the correlation between the carbon 

flux and temperature for Period 1 between October and June, it gave the correlation coefficient 
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(R2) values of 0.04, 0.56, and 0.081 for the October-February, March-April, and May-June 

subperiods. During the period 5 growing season, there is no correlation at the beginning but 

rather at the mid and end of the period with R2 coefficients 0.23 and 0.19 for the March-April, 

and May-June subperiods respectively. Further correlations were also observed for period 9, with 

R2   values of 0.09 and 0.57 for October-February and March-April respectively, but the May-

June subperiods have no correlation between the parameters. 

The three seasons were also subjected to the temperature response curve using the Arrhenius 

model (Figure 9) based on the three periods (1,5 & 9) in order to check the correlation between 

them. Period 1 has R2 values of 0.04, 0.62, and 0.081 for the October-February, March-April, and 

May-June subperiods of the 2017/2018 season respectively. The October-February subperiod in 

Period 5 does not have an R2 value except in March-April, and May-June subperiods with 0.24 

and 0.020 respectively. Period 9 also has a missing correlation value in the subperiod of May-

June due to no growth activity but it was present in October-February, and March-April, with the 

values 0.09 and 0.57 accordingly.  The Arrhenius R2 was quite similar to Van’t Hoff Model but 

still the temperature response curve is not well fitted to the carbon dioxide fluxes which makes it 

necessary to try the next model. 

Lloyd and Taylor’s model was also used to calculate the R2 for the three periods. The R2 for 

period 1 based on the three subperiods are 0.042, 0.58, and 0.086 as shown in Table 2. Period 5 

has the following correlation coefficient for the subperiods of March-April, and May-June as 

0.23, and 0.19 respectively but was totally absent in the October-February subperiod. The R2 

values for Periods 9 are 0.17, 0.59, and null for October-February, March-April, and May-June 

respectively.  

The degree of correlations in the subperiods of October-February and May-June relative to the 

whole seasons were the lowest ranging from 0.04 to 0.19 and the highest values occurring in the 

March- April subperiod across all three periods of the growing seasons. 
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TABLE 2. THE STATISTICAL FEATURES OF THE RELATIONSHIPS BETWEEN THE FITTED 

COEFFICIENTS AND R2 VALUES FOR ALL THE 3 PERIODS IN ALL THE 3 YEARS. 

Period/Year 2017/2018 2019/2020 2021/2022 

 a B R2 A B R2 a B R2 

 Van't Hoff model 

October-

February 

2.611 0.1188 0.0421 - - - 1.64 0.0913 0.1737 

March-

April 

3.893 0.09979 0.5576 2.495 0.07313 0.2293 4.064 0.1782 0.5833 

May-June 8.972 0.04636 0.08794 3.074 0.06185 0.1856 - - - 

 Arrhenius model 

October-

February 

1.373 5.409 0.03967 - - - 1.045 3.003 0.9223 

March-

April 

5.011 68.92 0.6214 2.647 55.67 0.2425 4.376 77.88 0.5695 

May-June 13 139.4 0.08138 1.974 177.6 0.1988 - - - 

 Lloyd and Taylor’s model 

October-

February 

2.361 285.6 0.04216 - - - 1.563 229.7 0.173 

March-

April 

4.105 320.9 0.5827 2.523 231.8 0.2331 4.133 527.1 0.5869 

May-June 9.608 197.3 0.08631 2.833 259.9 0.1899 - - - 

R2, correlation coefficient, a and b – coefficients/parameters of the model 
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4.2 Discussion 

4.2.1 Ecosystem respiration models comparison with other croplands 

This research compared how the response of CO2 flux to temperature differs based on three 

models: Van't Hoff, Arrhenius, and Lloyd and Taylor. The results indicated that the Lloyd and 

Taylor model produced better temperature curves than the other two models. According to X. 

Bao et al (2020), an eight-year study of changes in RE residue incorporated rotation croplands 

and a similar two-year study by Li et al. (2015) of a rain-fed maize ecosystem in China both 

found that the Lloyd and Taylor model was more accurate than the other two models. The 

accuracy of the Van't Hoff and Arrhenius models was limited due to improper approximations 

that led to inaccuracies in the numerical values of the activation enthalpies (Keleti, 1993). 

The results of the three models obtained from the wheat field show a good correlation between 

temperature and CO2 flux with seasonal and periodic variations. The RE value starts increasing 

gradually during the winter, reaches its maximum during the active growth period (March-April), 

and finally declines when wheat ripens. The wheat CO2 flux was usually higher during the mid-

season period when compared with the other parts of the growing periods. The increasing trend 

of CO2 flux at the mid-season periods may be explained by the optimum air and soil temperature, 

and precipitation as required by the plants during the intensive growing period except in some 

periods like 2019 where there was drought occurrence. According to Guo et al. (2019), 

temperature, precipitation, soil moisture, and plant development, all contribute to the interannual 

variability in agroecosystem RE. The increase in temperatures from winter to summer has an 

impact on ecosystem respiration (RE) due to the negative impact of extreme temperatures on gas 

flow within the ecosystem. This could be caused by the influence of climate change. One key 

factor in identifying a correlation between global warming and respiratory carbon flux in land-

based ecosystems is the temperature sensitivity of ecosystem respiration (Q) (Reichstein et al., 

2007). The Ws decreases when the temperature of the soil and air rise together, which causes an 

increase in the activity of microorganisms in the soil (Fisher and Whitford's findings in 1995). 

This boosts soil fertility, leading to better plant growth and a subsequent increase in the exchange 

of CO2 flux. Jassal et al., (2007) noted that changes in soil moisture and temperature had a more 

significant impact on ecosystem respiration than on soil respiration. RE comprises both below-

ground (soil) and above-ground (plant) components. Numerous factors, such as leaf area index 
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(LAI), fine root biomass, soil temperature and moisture, photosynthetic carbon allocation, size of 

the soil organic carbon pool, microbial biomass, and composition of the microbial community, 

can influence both plant RE and soil RE, which consist of primary heterotrophic and autotrophic 

components. Thus, all these factors play a crucial role in determining RE (Cheng et al., 2015; 

Huang et al., 2016).  

This study discovered a substantial and positive correlation in period 1 between temperature and 

carbon flux. (Fig. 3a) using Lloyd and Taylor model. At the beginning of period 1, the 

relationship between the two parameters was weak despite high precipitation and Ws but low Ta 

and Ts as a result of slow plant growth and low vegetation cover. During the Mid-period (March-

April), the Ta and Ts start to increase gradually and the precipitation decreases but the CO2 

exchange is high due to intensive plant growth with more vegetation. The correlation shows a 

good temperature response curve in Fig. 3a indicating that the increase in soil temperature has a 

significant effect on CO2 flux. In the same period 1, we examined the response of high 

temperature with CO2 flux around May-June where there was a decline in growth and result in 

less intense CO2 release despite the temperature reaching its peak. 

Period 5 indicated no significant correlation between the Ts and CO2 at the beginning of October 

as a result of drought at the early start of the season in 2019 which leads to low regeneration 

despite high precipitation in later months. This also affects the soil temperature because it was a 

major contributing factor to RE than precipitation as any variation in it may alter CO2 exchange. 

Several research investigations have demonstrated that the optimal level of soil moisture can be 

directly impacted by changes in soil temperature, which in turn affects the RE (Chang et al., 

2016). However, the CO2 flux tends to improve around March-April when intensive growth 

occurs but still, the correlation was very weak due to the effect of drought at the beginning of the 

season. The CO2 flux trend decline after reaching its peak as the season approaches June as no 

active plant growth but soil organic matter decomposition. It can be inferred that little change in 

precipitation pattern had a big effect on the Ts and further disturbs the CO2 balance within the 

ecosystem. 

During the period 9, there is a notable correlation between Ts and CO2, which persisted from the 

beginning of the season (October-February) until the active growth phase (March-April), where 

the correlation was considerably strong. A further correlation was not observed at the end of 

period 9 despite the high temperature but the precipitation was quite low when compared with the 



 

24 
 

other periods. Furthermore, at the end of period 9, plant growth and activities ceased due to 

drought caused by insufficient in the year 2022. The amount of precipitation was decreasing 

annually which may disturb the interannual variation of soil moisture and thereby affects the soil 

and air temperature. It can be inferred that the effect of global warming would affect the carbon 

dioxide emissions of croplands as a result of variation in the climatic factors annually around the 

globe.  
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Figure 3. Temperature Response Curves of Period 1 Using Lloyd and Taylor Model. 

 

Figure 4. Temperature Response Curves of Period 5 Using Lloyd and Taylor Model. 

 

Figure 5. Temperature Response Curves of Period 9 Using Lloyd and Taylor Model. 
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Figure 6. Half hourly fluxes of CO2 (NEE) for the three selected growing periods at the Kartal 

eddy covariance site. 
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5.0 CONCLUSION AND RECOMMENDATION 

Using five years of eddy covariance data, we characterized the year-to-year fluctuations in total 

ecosystem respiration (RE) for a wheat crop in the field, and investigated how temperature 

influenced these variations across three growing seasons. We also assessed the performance of 

three different RE models that accounted for temperature dependence. Our results showed that 

Lloyd and Taylor's model was the most appropriate, as it had the best fit with the correlation 

coefficient values observed over the five-year period. The R2 values for the wheat crop were 

quite high during the March-April subperiod with 0.59 while it was weak during the October-

February and May-June subperiods ranging from 0.04 to 0.19. Initially, it appeared that changes 

in wheat CO2 emissions from year to year were primarily influenced by Ts and precipitation. 

However, after conducting further analysis using the Lloyd and Taylor model, it became apparent 

that the respiration rate (RE) was actually affected more significantly by Ts and drought, rather 

than just Ta. These findings suggest that the relationship between wheat RE and Ws was only 

occasional, and that interannual changes in CO2 emissions were mainly governed by Ts, Ta, and 

Precipitation. While the seasonal CO2 flux differed, the net source and net sink activities during 

periods 1 and 9 were quite similar. However, in period 5, there were significant differences, 

which were largely attributed to an early winter drought in 2019 that impacted the entire season 

during that period. Ecosystem temperature had a greater impact on total ecosystem respiration 

compared to the suppression caused by drought stress. Alternatively: Total ecosystem respiration 

was less affected by drought stress than by ecosystem temperature. Our study indicated that the 

effect of global warming would affect the carbon dioxide emissions of croplands as a result of 

variations in climatic factors annually around the globe.  

In the early years of eddy covariances measurements, numerous studies have been done on the 

estimation of the carbon balance in agroecosystems, they are typically restricted to one specific 

vegetation type that is largely homogeneous in nature. Due to the significant efforts in last 

decades, the estimation of the carbon balance between the atmosphere and ecosystem has seen 

significant progress and nowadays this method is widely used to measure carbon balance of 

various ecosystems (e.g., grasslands, croplands and forests) in the frame of networks like the 

Integrated Carbon Observation System (ICOS) in Europe or AmeriFlux in the USA. Based on 

this huge amount of data, more research should be done to compare the carbon budget of various 
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vegetation concurrently, including forests and croplands, grassland and forests, etc., which is of 

great importance.  
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6.0 SUMMARY 

Accurate assessment of the terrestrial ecosystem respiration (RE) from carbon dioxide emissions 

of croplands is essential for the development of regional- to global-scale carbon budgets. In order 

to quantify the fluctuations in ecosystem respiration (RE) using temperature sensitivity and other 

parameters, continuous measurements of nighttime RE were obtained in wheat fields using the 

eddy covariance method from 2017 to 2022 growing periods. Based on correlation analysis, there 

was a relationship between the average soil temperature, CO2 flux, and the interannual variations 

in the wheat field. The temperature response curve for three periods (1, 5, and 9) from October to 

June was analyzed using Van't Hoff, Arrhenius, and Lloyd and Taylor's models. Lloyd and 

Taylor's model was the most precise and well-suited to the data among the three models in the 

March-April subperiod where it has the maximum correlation coefficients (R2) of 0.23 to 0.59 

and lowest in the other subperiods namely October-February and May-June respectively. The 

correlation in period 5(0.23) of March-April was weak due to the low amount of precipitation and 

drought in 2019 and the absence of correlation indicated dormant or no growth periods in the 

field. The variation in RE of the wheat field was significantly influenced by soil and air 

temperature, and precipitation but less influenced by soil water content. The interannual 

variations in the wheat field showed a connection between the average soil temperature and CO2 

flux, as indicated by the results of the correlation analysis. It was suggested that day and night 

period ecosystem respiration be studied and compared in heterogeneous ecosystems to arrive at a 

clear conclusion in CO2 flux as influenced by various climatic factors within the environment. 
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Figure 7. Temperature Response Curves of the Three Periods Using Van’t Hoff Model. 
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 Figure 8. Temperature Response Curves of the Three Periods Using Arrhenius Model. 
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