
DEVELOPMENT OF THE
CONTROL OF A ROBOTIC ARM

USING ROS2

 IBRAHIM MALLI
 MSc Mechanical Engineering

Szent Istvan Campus, Gödöllő

2023

Hungarian University of Agriculture and Life Science
Szent István Campus

MSc Mechanical Engineering Course

DEVELOPMENT OF THE CONTROL OF A ROBOTIC ARM
USING ROS2

 Primary Supervisor: Tóth János

 Assistant Professor

 Author: Ibrahim Malli

 BLD9OB

 Institute/Department: Institute of Technology

 MSc Mechanical Engineering

Szent Istvan Campus, Gödöllő

2023

 INSTITUTE OF TECHNOLOGY

2

ABSTRACT

Development of the Control of a Robotic Arm Using ROS2

Ibrahim Malli

Course, level of education: MSc Mechanical Enginering

Host Department/Institute: Institute of Technology

Primary thesis advisor: Dr. Tóth János, Assistant Professor, Institute of Technology, MSc
Mechanical Enginering

In this study, it is aimed to develop the control of a robotic arm using ROS2. The

collaborative robot arm, developed using the ROS 2 MoveIt 2 repository and the RViz visualization

tool and ROS 2 Development Studio, is intended to be capable to move in the Gazebo simulation

toolbox.

ROS is the most widely used middleware in robotics. It is the interface that allows the robot

to process the data it receives from the outside world through sensors and send it back to the robot

as a command. It allows to use different languages (C++, Python) on the same robot. The primary

goal of ROS is to support code reuse in robotics research and development which enables the

robotic arm to be developed more easily thanks to common repository and documentations,

facilitates robot coding in C++ language.

Key Words: Robotic Arm, Robot Operating System-ROS, Programming

 INSTITUTE OF TECHNOLOGY

3

Table of Contents

Table of Contents .. 3

Table of Figures .. 5

List of Tables ... 6

1 INTRODUCTION .. 8

1.2 Robotic Arm Types ... 10

1.2.1 Cartesian Robot / Gantry Robot ... 10

1.2.2 Collaborative Robot / Cobot .. 11

1.2.3 Cylindrical Robot ... 11

1.2.4 Spherical Robot / Polar Robot ... 12

1.2.5 SCARA Robot ... 12

1.2.6 Articulated Robot ... 13

1.2.7 Parallel Robot ... 13

1.2.8 Anthropomorphic / Humanoid Robot .. 13

1.3 Robot Software Platform ... 14

2 ROS: Robot Operating System ... 17

2.1 Why Should We Use the ROS .. 19

2.2 Meta-Operating System .. 21

2.3 Objectives of ROS ... 22

2.4 Components of ROS .. 23

2.5 The ROS Ecosystem .. 25

2.6 History of ROS .. 25

2.7 The ROS Versions ... 27

3 CONFIGURING THE ROS 2 DEVELOPMENT ENVIRONMENT 30

3.1 Installing Operating Systems: Linux ... 31

3.2 Programming ROS 2 in Python or C++ .. 31

3.3 Installing ROS 2 .. 33

3.3.1 Installing ROS 2 Foxy Fitzroy to Linux Ubuntu ... 35

3.3.2 Using the ROS 2 Development Studio (ROSDS) .. 38

3.4 Installing MoveIt 2 Packages .. 39

 INSTITUTE OF TECHNOLOGY

4

3.5 Installing Gazebo ... 40

3.6 Installing RViz ... 42

4 CONTROL A COLLABORATIVE ROBOT ARM IN ROS 2 PLATFORM 43

4.1 Dynamic Model ... 44

4.1.1 Robot Kinematics ... 44

4.1.2 Kinematic Model ... 47

4.2 Gazebo Model .. 48

4.3 Test Moveit2 .. 49

5 CONCLUSION AND FUTURE WORK .. 54

6 REFERENCES ... 57

7 APPENDIX ... 59

 INSTITUTE OF TECHNOLOGY

5

Table of Figures

Figure 1. Gantry robot GR-1750 series [3] ... 10

Figure 2. YuMi, a collaborative robot developed by ABB. [4] ... 11

Figure 3. A cylindrical robot arm [5] .. 11

Figure 4. Spherical Robot [6] .. 12

Figure 5. SCARA-type robot AR-F500HCs [3] .. 12

Figure 6. Kuka Articulated robot KR 700 PA [20] .. 13

Figure 7. Omron iX3 Parallel Robot [7] .. 13

Figure 8. Valkyrie from NASA. [21] ... 14

Figure 9. Various Robot Software Platforms [8] ... 15

Figure 10. Robot Operating System Logo [9] ... 18

Figure 11. A typical ROS network configuration [13] .. 18

Figure 12. ROS as a Meta-Operating System [8] .. 21

Figure 13. ROS Multi-Communication [8] ... 22

Figure 14. The ROS Ecosystem [22] ... 25

Figure 15. Open Robotics and OSRF Logo [23] ... 26

Figure 16. ROS versions timeline [9] .. 27

Figure 17. Active ROS 1 distributions. [9] .. 28

Figure 18. Active ROS 2 distributions. [9] .. 28

Figure 19. The ROS Development Studio (ROSDS) by The Construct. [16] ... 38

Figure 20. UR3e robot arm joints (6 DOF) ... 44

Figure 21. UR3e robot arm in its home position with the kinematic parameters .. 46

Figure 22. UR3e robot arm standard coordinate directions ... 47

Figure 23. UR3e robot arm zero and home positions .. 48

Figure 24. Gazebo UR3e collaborative Robot simulation interface. ... 49

Figure 25. ROS 2 package at the code editor. ... 51

Figure 26. Returning the arm to the previous position in MoveIt2. .. 52

Figure 27. MoveIt 2 graphical interface package first positioning of the collaborative robot arm 52

Figure 28. Visualization of the collaborative robot arm using with ROS MoveIt2 visualisation tool RViz 53

Figure 29. Visualization of the collaborative robot arm on Gazebo .. 53

https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403185
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403187
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403188
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403189
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403190
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403191
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403192
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403193
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403194
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403195
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403196
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403197
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403198
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403199
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403200
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403201
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403202
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403203
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403204
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403205
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403206
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403207
https://d.docs.live.net/e0c7e5953eaf7f8f/Masa%C3%BCst%C3%BC/Malli_ibrahim_bld9ob_2023_MUSZK049N_MUSZK051N.docx#_Toc134403208

 INSTITUTE OF TECHNOLOGY

6

List of Tables

Table 1. Support for higher-level functionality in various languages [12] .. 24

Table 2. ROS2 distributions delivered until August 2021. [9] .. 28

Table 3. Summary of ROS 2 features compared to ROS 1. [15] ... 29

Table 4. Specifications for the Universal Robots e-Series robots. .. 43

Table 5. The Denavit–Hartenberg parameters of UR3e robots are shown as below. [19] 45

 INSTITUTE OF TECHNOLOGY

7

List of Abbreviations

Some abbreviations and symbols used in this study are presented below with their

explanations.

Abbreviations Explanations

DOF Degrees of freedom

BSD Berkeley Software Distribution

ROS Robot Operating System

LTS Long Term Support

GPS Global Positioning System

RIA The Robotics Industries Association

SLAM Simultaneous Localization and Mapping

API Application Programming Interface.

IEEE Institute of Electrical and Electronics Engineers

LTS Long Term Support

EOL End-of-life

SDK Software development kit

UTF-8 Unicode Transformation Format 8-bit

 RViz ROS Visualization

 SCARA Selective Compliance Articulated Robot Arm

 AIST Advanced Industrial Science and Technology

 GUI Graphical User Interface

PMSM Permanent Magnet Synchronous Machine

 INSTITUTE OF TECHNOLOGY

8

1 INTRODUCTION

 The term "Robot" refers to an electromechanical device with numerous degrees of freedom

(DOF) that humans can program to perform various tasks. [1] The term “Industrial Robot” The

Robotics Industries Association (RIA) defines robot in the following way: “An industrial robot is

a programmable, multi-functional manipulator designed to move materials, parts, tools, or special

devices through variable programmed motions for the performance of a variety of tasks.” To fulfil

their purposes, many robots are required to interact with their environment, and the world around

them. Sometimes they are required to move or reorient objects from their environments without

direct contact by human operators. Unlike the Body/frame and the Control System, manipulators

are not integral to a robot, for instance, a robot can exist without a manipulator.

A robot arm in a robotic system represents the end-effector that simulates the human arm to

carry out tasks such as picking and placing. For years, robotics has been used in the industry. A

robotic system can also fulfil its duty in agriculture to complete some acceptable jobs by

researching the parallels between agriculture and industries. The study of robotics is to combine

and simulate certain aspects of human body function by implementing mechanisms, sensors,

actuators, and computers.

Industrial robot and manipulator systems are machines that can be reprogrammed, move

objects, workpieces, tools according to the programmed software, and perform the operation.

Industrial robot and manipulator systems can be used for various purposes and in different

application areas. People wanted to design robot and manipulator systems with factors such as

reducing workload, increasing product quality, and speeding up the production process. For this

reason, a wide variety of tasks and applications can be made in industry for robots.

In recent years, robot studies have gained importance industrially, especially with the

initiatives of Asian and American countries. Robots have market value not only as a manufacturing

tool, but also as a stand-alone product. This means opening a new market based on qualified

workforce and high technology.

 INSTITUTE OF TECHNOLOGY

9

In today's industry conditions and competitive market, the perfection, quality, and efficiency

of the work is the biggest factor. Under these working conditions, the use of robots and

manipulators is undeniable. Thus, factories that have manipulators gradually increase the

difference between them and their competitors. Robot and manipulator systems have saved people

from a great deal of work by working in places such as paint, welding, and spot works, which are

unsuitable for human health.

1.1 Robotic Arm

A robotic arm is a type of mechanical arm, usually programmable, with similar functions to

a human arm; the arm may be the sum total of the mechanism or may be part of a more complex

robot. The links of such a manipulator are connected by joints allowing either rotational motion

(such as in an articulated robot) or translational (linear) displacement. The links of the manipulator

can be considered to form a kinematic chain. The terminus of the kinematic chain of the

manipulator is called the end effector and it is analogous to the human hand. However, the term

"robotic hand" as a synonym of the robotic arm is often proscribed. [2]

Typical industrial robot arm includes a series of joints, articulations and manipulators that

work together to closely resemble the motion and functionality of a human arm (at least from a

purely mechanical perspective). A programmable robotic arm can be a complete machine in and of

itself, or it can function as an individual robot part of a larger and more complex piece of

equipment.

A great many smaller robotic arms used in countless industries and workplace applications

today are benchtop-mounted and controlled electronically. Larger versions might be floor-

mounted, but either way they tend to be constructed from sturdy and durable metal (often steel or

cast iron), and most will feature between 4-6 articulating joints. Again, from a mechanical

perspective, the key joints on a robotic arm are designed to closely resemble the main parts of its

human equivalent - including the shoulder, elbow, forearm and wrist.

 INSTITUTE OF TECHNOLOGY

10

Such is the speed and power that industrial robot arms can work at, there’s a pressing need

to be extremely safety-conscious when programming and using them. However, when deployed

appropriately, they can vastly increase production rates and accuracy of placement and picking

tasks, as well as performing heavy-duty lifting and repositioning functions that would be

impossible even for groups of multiple human workers to carry out at any sort of pace.

As technology has advanced and the manufacturing costs of robotic components has fallen

over the years, the past decade or so has seen a very rapid expansion in the availability and

affordability of robots and robotic arms across a very wide range of industries. This means that

they’re far more commonly encountered in smaller-scale operations than they once were, because

they’re no longer only an economically viable option for large-scale production lines outputting

very high volumes of product.

1.2 Robotic Arm Types

1.2.1 Cartesian Robot / Gantry Robot

Used for pick and place work, application of sealant, assembly operations, handling machine

tools and arc welding. It is a robot whose arm has three prismatic joints, whose axes are coincident

with a Cartesian coordinator.

Figure 1. Gantry robot GR-1750 series [3]

https://en.wikipedia.org/wiki/Automated_storage_and_retrieval_system

 INSTITUTE OF TECHNOLOGY

11

1.2.2 Collaborative Robot / Cobot

Cobot applications contrast with traditional industrial robot applications in which robots are

isolated from human contact. Cobot has a large variety of applications such as: Commercial

Application, Robotic Research, Dispensing, Material Handling, Assembly, Finishing, Quality

Inspection. Cobot safety may rely on lightweight construction materials, rounded edges, and the

inherent limitation of speed and force, or on sensors and software that ensures safe behaviour.

Figure 2. YuMi, a collaborative robot developed by ABB. [4]

1.2.3 Cylindrical Robot

Used for assembly operations, handling at machine tools, spot welding, and handling at die

casting machines. It is a robot whose axes form a cylindrical coordinate system.

Figure 3. A cylindrical robot arm [5]

https://www.ufactory.cc/collaborative-robots-applications

 INSTITUTE OF TECHNOLOGY

12

1.2.4 Spherical Robot / Polar Robot

Used for handling machine tools, spot welding, die casting, fettling machines, gas welding

and arc welding. It is a robot whose axes form a polar coordinate system.

Figure 4. Spherical Robot [6]

1.2.5 SCARA Robot

Used for pick and place work, application of sealant, assembly operations and handling

machine tools. This robot features two parallel rotary joints to provide compliance in a plane.

Figure 5. SCARA-type robot AR-F500HCs [3]

 INSTITUTE OF TECHNOLOGY

13

1.2.6 Articulated Robot

Used for assembly operations, diecasting, fettling machines, gas welding, arc welding and

spray-painting. It is a robot whose arm has at least three rotary joints.

1.2.7 Parallel Robot

One use is a mobile platform handling cockpit flight simulator. It is a robot whose arms have

concurrent prismatic or rotary joints.

Figure 7. Omron iX3 Parallel Robot [7]

1.2.8 Anthropomorphic / Humanoid Robot

It is shaped in a way that resembles a human hand, i.e. with independent fingers and thumbs.

Figure 6. Kuka Articulated robot KR 700 PA [21]

 INSTITUTE OF TECHNOLOGY

14

1.3 Robot Software Platform

Recently, within the robotics industry, platforms have been gaining much attention.

Platforms are divided into two: software and hardware.

Software platforms include tools used to develop robotic programs such as hardware

abstraction, low-level device control, sensing, recognition, SLAM (Simultaneous Localization and

Mapping), navigation, manipulation, package management, libraries, debugging, and development

tools. Meanwhile, hardware platforms focus on tangible, commercial components and systems or

products, such as mobile robots, drones, and humanoids. [8]

Notably, hardware abstraction occurs in tandem with software platforms, allowing

application programs to be developed using a software platform even without prior knowledge of

hardware. This is similar to how we can create mobile apps without knowing the hardware

configuration or specifications of the most recent smartphone.

In other words, software platforms have allowed many people to contribute to robot

development, and robot hardware is being designed according to the interface provided by software

platforms.

Figure 8. Valkyrie from NASA. [22]

https://roboticsbiz.com/4-reasons-why-companies-prefer-mobile-robots-in-warehouses/
https://roboticsbiz.com/potential-use-of-sex-robots-in-elderly-and-disabled-care/
https://roboticsbiz.com/engineering-the-software-systems-for-robotics-an-overview/

 INSTITUTE OF TECHNOLOGY

15

Major software platforms include the Robot Operating System (ROS), the Japanese Open

Robotics Technology Middleware (OpenRTM), the European real-time control centred OROCOS,

and the Korean OPRoS. Although their names differ, the fundamental reason for introducing robot

software platforms is that there are far too many different types of robot software, and their

complexities are causing numerous issues.

• ERSP11 Evolution Robotics Software Platform, Evolution Robotics - Europe

• ROS Robot Operating System, Open Robotics12 - U.S.

• OpenRTM National Institute of Adv. Industrial Science and Technology (AIST) - Japan

• OROCOS Europe

• OPRoS ETRI, KIST, KITECH, Kangwon National University - South Korea

• NAOqi OS13 SoftBank and Aldebaran - Japan and France

Aside from these, there are also Player, YARP, MARIE, URBI, CARMEN, Orca and MOOS.

As a result, robot researchers from all over the world are working together to find a solution.

Robot Operating System is the most widely used robot software platform (ROS). Many of the

companies leading the industrial robot field that have joined this consortium are working to solve

some of the industry’s most difficult and newly emerging problems, such as automation, sensing,

and collaborative robot. Using a common platform, particularly a software platform, promotes

collaboration to solve difficult problems and increase efficiency.

Figure 9. Various Robot Software Platforms [8]

 INSTITUTE OF TECHNOLOGY

16

For instance, when implementing a function that helps a robot to recognize its surrounding

situation, the diversity of hardware and the fact that it is directly applied in real-life can be a burden.

Some tasks may be considered easy for humans, but researchers in a college laboratory or company

are too difficult to deal with robots to perform a lot of functions such as sensing, recognition,

mapping, and motion planning.

However, it would be a different story if professionals from around the world shared their

specialized software to be used by others. For example, the robotics company Robotbase, which

drew attention in the social funding KickStarter and CES2015, recently developed the Robotbase

Personal Robot and successfully launched it through a social funding. In the case of Robotbase,

they focused on their core technology, which is face recognition and object recognition, and for

their mobile robot they used the mobile robot base from Yujin Robot which supports ROS, for the

actuator they used ROBOTIS Dynamixel, and for the obstacle recognition, navigation, motor drive,

etc. they used the public package of ROS.

Another example can be found in the ROS Industrial Consortium (ROS-I). Many of the

companies leading the industrial robot field participate in this consortium and are solving some of

the newly emerging and difficult problems from the industrial robot field one by one, such as in

automation, sensing, and collaborative robot. Using a common platform, especially a software

platform, is proved to be promoting collaboration to solve problems that were previously difficult

to tackle and increasing efficiency. [8]

ROS does not necessitate the repeated development of existing systems and programs.

Nonetheless, it is simple to convert a non-ROS system to a ROS system by inserting a few

standardized codes. Furthermore, ROS provides a variety of commonly used tools and software. It

enables users to concentrate on the features they are interested in or want to contribute to, reducing

development and maintenance time.

 INSTITUTE OF TECHNOLOGY

17

2 ROS: Robot Operating System

ROS: Robot Operating System is an open-source, meta-operating system for your robot. It

provides the services you would expect from an operating system, including hardware abstraction,

low-level device control, implementation of commonly used functionality, message-passing

between processes, and package management. It also provides tools and libraries for obtaining,

building, writing, and running code across multiple computers.

The ROS Wiki defines ROS as above. In other words, ROS includes hardware abstraction

layer similar to operating systems. However, unlike conventional operating systems, it can be used

for numerous combinations of hardware implementation. Furthermore, it is a robot software

platform that provides various development environments specialized for developing robot

application programs.

Robotic Operating System (ROS) was introduced to the world with an article presented at

the IEEE International Conference on Robotics and Automation in Kobe, Japan, during May 12 -

17, 2009. ROS was the first standard operating system for robot development. Moreover, a free,

open-source, inherently flexible system saved robot developers the daunting hassle of spending

time developing an operating system from scratch. With open-source robotics now becoming the

norm, development efforts have gained momentum with the support of the masses.

ROS stands for Robot Operating System and is a software that allows controlling robots.

Even though the operating system is mentioned in its name, it can be called an open-source

interface software that enables communication between human and robot.

ROS is the most widely used software in robots. It is the interface that allows the robot to

process the data it receives from the outside world through sensors and send it back to the robot as

a command. The working logic here works in the broadcast/subscriber logic, that is, in a simpler

sense, the sender-receiver logic. This communication between the computer and root is provided

by topics and messages. It is an open source (BSD) system. It can be described as a standalone

programming language. It allows to use different languages (Java, Lisp, C++, Python) on the same

 INSTITUTE OF TECHNOLOGY

18

robot. The Indigo version released in 2014 is supported until 2019, and the Kinetic Kame (LTS)

version released in 2016 is supported until 2021. [9]

The primary goal of ROS is to support code reuse in robotics research and development. It

has been quickly adopted by many robotics research institutions and companies as their standard

development framework. The list of robots using ROS is quite extent and it includes platforms

from diverse domains, ranging from aerial and ground robots to humanoids and underwater

vehicles. To name some, the humanoid robots PR-2 and REEM-C, ground robots such as the

ClearPath platforms and aerial platforms such as the ones from Ascending Technologies are fully

developed in ROS. Furthermore, a quite extent list of popular sensors for robots is already

supported in ROS. To name some, sensors such as Inertial Measurement Units, GPS receivers,

cameras and lasers can already be accessed from the drivers available on the ROS system. [10]

However, ROS supports soft real-time applications. ROS has a repository in which

developers can use code that has been already written for robot components like motion planners

and vision systems. In addition, it can be integrated easily with other popular open-source software

libraries such as OpenCV, Point Cloud Library, Gazebo simulator, etc. As ROS is Linux based

software, it cannot guarantee the hard real-time properties of a system.

Figure 10. Robot Operating System Logo [9]

Figure 11. A typical ROS network configuration [13]

 INSTITUTE OF TECHNOLOGY

19

ROS implements several different styles of communication: asynchronous, synchronous and

data storage. The ROS runtime "graph" is a peer-to-peer network of processes (potentially

distributed across machines) that are loosely coupled using the ROS communication infrastructure.

2.1 Why Should We Use the ROS

ROS (Robot Operating System) is an open-source software development kit for robotics

applications. ROS offers a standard software platform to developers across industries that will carry

them from research and prototyping all the way through to deployment and production. Don’t

reinvent the wheel. Create something new and do it faster and better by building on ROS! [9]

First is the reusability of the program: A user can focus on the feature that the user would

like to develop, and download the corresponding package for the remaining functions. At the

same time, they can share the program that they developed so that others can reuse it. As an

example, it is said that for NASA to control their robot Robonaut2 used in the International Space

Station, they not only used programs developed in-house but also used ROS, which provides

various drivers for multi-platforms, and OROCOS, which supports real-time control, message

communication restoration and reliability, in order to accomplish their mission in outer space.

The Robotbase above is another example of thoroughly implemented reusable programs.

Second is that ROS is a communication-based program: Often, in order to provide a

service, programs such as hardware drivers for sensors and actuators and features such as sensing,

recognition and operating are developed in a single frame. However, in order to achieve the

reusability of robot software, each program and feature is divided into smaller pieces based on

its function. This is called componentization or modularization according to the platform. Data

should be exchanged among nodes(a process that performs computation in ROS) that are divided

into units of minimal functions, and platforms have all necessary information for exchanging of

data among nodes. The network programming, which is greatly useful in remote control, becomes

possible when communication among node is based on network so that nodes are not restricted

by hardware. The concept of network connected minimal functions is also applied to Internet of

 INSTITUTE OF TECHNOLOGY

20

Things (IOT), so ROS can replace the IoT platforms. It is remarkably useful for finding errors

because programs that are divided into minimal functions can be debugged separately.

Third is the support of development tools: ROS provides debugging tools, 2D

visualization tool (rqt, rqt is a software framework of ROS that implements the various GUI tools

in the form of plugins) and 3D visualization tool (RViz) that can be used without developing

necessary tools for robot development. For example, there are many occasions where a robot

model needs to be visualized while developing a robot. Simply matching the predefined message

format allows users to not only check the robot’s model directly, but also perform a simulation

using the provided 3D simulator (Gazebo). The tool can also receive 3D distance information

from recently spotlighted Intel RealSense or Microsoft Kinect and easily convert them into the

form of point cloud, and display them on the visualization tool. Apart from this, it can also record

data acquired during experiments and replay them whenever it is necessary to recreate the exact

experiment environment. As shown above, one of the most important characteristics of ROS is

that it provides software tools necessary for robot development, which maximizes the

convenience of development.

Fourth is the active community: The robot academic world and industry that have been

relatively closed until now are changing in the direction of emphasizing collaboration as a result

of these previously mentioned functions. Regardless of the difference in individual objectives,

collaboration through these software platforms is actually occurring. At the center of this change,

there is a community for open source software platform. In case of ROS, there are over 5,000

packages that have been voluntarily developed and shared as of 2017, and the Wiki pages that

explain their packages are exceeding 18,000 pages by the contribution of individual users.

Moreover, another critical part of the community which is the Q&A has exceeded 36,000 posts,

creating a collaboratively growing community. The community goes beyond discussing the

instructions, and into finding necessary components of robotics software and creating regulations

thereof. Furthermore, this is progressing to a state where users come together and think of what

robot software should entail for the advancement of robotics and collaborate in order to fill the

missing pieces in the puzzle.

 INSTITUTE OF TECHNOLOGY

21

Fifth is the formation of the ecosystem: The previously mentioned smartphone platform

revolution is said to have occurred because there was an ecosystem that was created by software

platforms such as Android or iOS. This type of progression is likewise underway for the robotic

field. In the beginning, every kind of hardware technology was overflowing, but there was no

operating system to integrate them. Various software platforms have developed and the most

esteemed platform among them, ROS, is now shaping its ecosystem. It is creating an ecosystem

that everyone ― hardware developers from the robotic field such as robot and sensor companies,

ROS development operational team, application software developers, and users ― can be happy

with it. Although the beginning may yet be marginal, when looking at the increasing number of

users and robot-related companies and the surge of related tools and libraries, we can anticipate

a lively ecosystem in the near future. [8]

2.2 Meta-Operating System

Operating Systems (OS) for general purpose computers include Windows (XP, 7, 8, 10),

Linux (Linux Mint, Ubuntu, Fedora, Gentoo) and Mac (OS X Mavericks, Yosemite, El Capitan).

For smartphones, there are Android, iOS, Symbian, RiMO, Tizen, etc.

Figure 12. ROS as a Meta-Operating System [8]

 INSTITUTE OF TECHNOLOGY

22

As shown in Figure 13. ROS data communication is supported not only by one operating system,

but also by multiple operating systems, hardware, and programs, making it highly suitable for

robot development where various hardware are combined.

2.3 Objectives of ROS

One of the most frequently asked questions received over the years in ROS-related seminars

is to compare ROS with other robot software platforms (OpenRTM, OPRoS, Player, YARP,

Orocos, CARMEN, Orca, MOOS, Microsoft Robotics Studio). A simple comparison with these

platforms may be possible, but the comparison is not meaningful because they each have different

purposes. As a user of ROS, the goal of ROS is to build the development environment that allows

robotic software development to collaborate on a global level. That is to say, ROS is focused on

maximizing code reuse in the robotics research and development, rather than orienting towards the

so-called robot software platform, middleware, and framework. To support this, ROS has the

following characteristics.

• Distributed process: It is programmed in the form of the minimum units of executable

processes (nodes), and each process runs independently and exchanges data systematically.

• Package management: Multiple processes having the same purpose are managed as a

package so that it is easy to use and develop, as well as convenient to share, modify, and

redistribute.

Figure 13. ROS Multi-Communication [8]

 INSTITUTE OF TECHNOLOGY

23

• Public repository: Each package is made public to the developer’s preferred public

repository (e.g., GitHub) and specifies their license.

• API: When developing a program that uses ROS, ROS is designed to simply call an API

and insert it easily into the code being used. In the source code introduced in each chapter,

you will see that ROS programming is not much different from C++ and Python.

• Supporting various programming languages: The ROS program provides a client

library2 to support various programming languages. The library can be imported in

programming languages that are popular in the robotics field such as Python, C++, and Lisp

as well as languages such as JAVA, C#, Lua, and Ruby. In other words, you can develop a

ROS program using a preferred programming language. [11]

These characteristics of ROS have allowed users to establish an environment where it is

possible to collaborate on robotics software development on a global level. Reusing a code in

robotics research and development is becoming more common, which is the ultimate goal of ROS.

2.4 Components of ROS

As shown in Figure 2-3, ROS consists of a client library to support various programming

languages, a hardware interface for hardware control, communication for data transmission and

reception, the Robotics Application Framework to help create various Robotics Applications, the

Robotics Application which is a service application based on the Robotics Application Framework,

Simulation tools which can control the robot in a virtual space, and Software Development Tools.

ROS supports several Client Libraries, though the main supported libraries are C++ roscpp

and rospy. There are also numerous ROS stacks and packages that provide higher-level

functionality. [12]

APIs:

 ROS: functionality available via ROS topics and services

 C++: functionality available in C++ libraries

 Python: functionality available in Python modules/packages

 INSTITUTE OF TECHNOLOGY

24

Table 1. Support for higher-level functionality in various languages [12]

API ROS C++ Python

ROS ROS roscpp rospy

Basic Datatypes common_msgs common_msgs common_msgs

Manipulating message
streams topic_tools message_filters message_filters

Drivers

joystick_drivers,
camera_drivers,
laser_drivers,
audio_common (aka
sound_drivers),
imu_drivers

joystick_drivers,
camera_drivers,
laser_drivers,
audio_common,
imu_drivers

Driver Implementation driver_common driver_common

Filtering data filters

3D processing
laser_pipeline,
perception_pcl

laser_pipeline,
perception_pcl

Image processing
image_common,
image_pipeline,
vision_opencv

vision_opencv

Transforms/Coordinates tf, tf_conversions,
robot_state_publisher tf, tf_conversions

Actions actionlib actionlib actionlib

Executive/Task
Manager executive_smach

 executive_smach

Navigation navigation via actionlib via actionlib
Simulation (2D) simulator_stage simulator_stage

Simulation (3D) simulator_gazebo simulator_gazebo

Robot Model robot_model

Realtime Controllers pr2_controller_manager

pr2_controller_interface,
realtime_tools

Motion planning (arms)
ompl,
chomp_motion_planner,
sbpl

actionlib through
move_arm

actionlib through
move_arm

Humanoid walk walk_msgs walk_interfaces

http://wiki.ros.org/ROS
http://wiki.ros.org/ROS
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy
http://wiki.ros.org/common_msgs
http://wiki.ros.org/common_msgs
http://wiki.ros.org/common_msgs
http://wiki.ros.org/topic_tools
http://wiki.ros.org/message_filters
http://wiki.ros.org/message_filters
http://wiki.ros.org/joystick_drivers
http://wiki.ros.org/camera_drivers
http://wiki.ros.org/laser_drivers
http://wiki.ros.org/audio_common
http://wiki.ros.org/sound_drivers
http://wiki.ros.org/imu_drivers
http://wiki.ros.org/joystick_drivers
http://wiki.ros.org/camera_drivers
http://wiki.ros.org/laser_drivers
http://wiki.ros.org/audio_common
http://wiki.ros.org/imu_drivers
http://wiki.ros.org/driver_common
http://wiki.ros.org/driver_common
http://wiki.ros.org/filters
http://wiki.ros.org/laser_pipeline
http://wiki.ros.org/perception_pcl
http://wiki.ros.org/laser_pipeline
http://wiki.ros.org/perception_pcl
http://wiki.ros.org/image_common
http://wiki.ros.org/image_pipeline
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/tf
http://wiki.ros.org/tf_conversions
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/tf
http://wiki.ros.org/tf_conversions
http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib
http://wiki.ros.org/executive_smach
http://wiki.ros.org/executive_smach
http://wiki.ros.org/navigation
http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib
http://wiki.ros.org/simulator_stage
http://wiki.ros.org/simulator_stage
http://wiki.ros.org/simulator_gazebo
http://wiki.ros.org/simulator_gazebo
http://wiki.ros.org/robot_model
http://wiki.ros.org/pr2_controller_manager
http://wiki.ros.org/pr2_controller_interface
http://wiki.ros.org/realtime_tools
http://wiki.ros.org/ompl
http://wiki.ros.org/chomp_motion_planner
http://wiki.ros.org/sbpl
http://wiki.ros.org/actionlib
http://wiki.ros.org/move_arm
http://wiki.ros.org/actionlib
http://wiki.ros.org/move_arm
http://wiki.ros.org/humanoid_walk
http://wiki.ros.org/walk_msgs
http://wiki.ros.org/walk_interfaces

 INSTITUTE OF TECHNOLOGY

25

2.5 The ROS Ecosystem

The term ‘Ecosystem’ is often mentioned in the smartphone market after the advent of

various operating systems such as Android, iOS, Symbian, RiMO, and Bada. The ecosystem refers

to the structure that connects hardware manufacturers, operating system developing companies,

app developers, and end users. [13]

For example, the smartphone manufacturers will produce devices that support hardware

interfaces of the operating system, and operating system companies create a generic library to

operate devices from various manufacturers. Therefore, software developers can use numerous

devices without understanding hardware to develop applications. The ecosystem includes the

distribution of application to end users.

Despite the name, ROS is not, in fact, an operating system. Rather, it’s an SDK (software

development kit) that provides the building blocks you need to build your robot applications.

Whether your application is a class project, a scientific experiment, a research prototype, or a final

product, ROS will help you to achieve your goal faster. And it’s all open source.

2.6 History of ROS

In May 2007, ROS was started by borrowing the early open- source robotic software

frameworks including switchyard, which is developed by Dr. Morgan Quigley by the Stanford

Artificial Intelligence Laboratory in support of the Stanford AI Robot STAIR (STanford AI Robot)

project. Dr. Morgan Quigley is one of the founders and software development manager of Open

Robotics (formerly the Open-Source Robotics Foundation, OSRF), which is responsible for the

development and management of ROS. Switchyard is a program created for the development of

artificial intelligence robots used in the AI lab’s projects at the time and is the predecessor of ROS.

Figure 14. The ROS Ecosystem [23]

 INSTITUTE OF TECHNOLOGY

26

In addition, Dr. Brian Gerkey (http://brian.gerkey.org/), the developer of the Player/Stage Project

(Player network server and 2D Stage simulator, later affects the development of 3D simulator

Gazebo), which was developed since 2000 and has had a major impact on ROS’s networking

program, is the CEO and co-founder of Open Robotics. Thus, ROS was influenced by Player/Stage

from 2000 and Switchyard from 2007 before Willow Garage changed the name to ROS in 2007.

In November 2007, U.S. robot company Willow Garage succeeded the development of ROS.

Willow Garage is a well-known company in the field for personal robots and service robots. It is

also famous for developing and supporting the Point Cloud Library (PCL), which is widely used

for 3D devices such as Kinect and the image processing open-source library OpenCV.

Willow Garage started to develop ROS in November of 2007, and on January 22, 2010, ROS

1.0 came out into the world. The official version known to us was released on March 2, 2010 as

ROS Box Turtle. Afterwards, C Turtle, Diamondback and many versions were released in

alphabetical order like Ubuntu and Android.

ROS is based on the BSD 3-Clause License and Apache License 2.0, which allows anyone

to modify, reuse, and redistribute. ROS also provided a large number of the latest software and

participated actively in education and academics, becoming known first through the robotics

academic society. There is now ROSDay and ROSCon conferences for developers and users, and

also various community gatherings under the name of ROS Meetup. In addition, the development

of robotic platforms that can apply ROS are also accelerating. Some examples are the PR214 which

stands for Personal Robot and the TurtleBot15, and many applications have been introduced

through these platforms, making ROS as the dominating robot software platform. [14]

Figure 15. Open Robotics and OSRF Logo [24]

 INSTITUTE OF TECHNOLOGY

27

2.7 The ROS Versions

ROS distribution is a versioned set of ROS packages. These are akin to Linux distributions

(e.g. Ubuntu). The purpose of the ROS distributions is to let developers work against a relatively

stable codebase until they are ready to roll everything forward. Therefore, once a distribution is

released, we try to limit changes to bug fixes and non-breaking improvements for the core packages

(everything under ros-desktop-full). And generally, that applies to the whole community, but for

"higher" level packages, the rules are less strict, and so it falls to the maintainers of a given package

to avoid breaking changes.

End-of-life ROS 1 distributions:

• C Turtle

• Diamondback

• Electric Emys

• Fuerte Turtle

• Groovy Galapagos

• Hydro Medusa

• Indigo Igloo

• Jade Turtle

• Kinetic Kame

• Lunar Loggerhead

Figure 16. ROS versions timeline [9]

End-of-life ROS 2 distributions:

• Ardent Apalone

• Bouncy Bolson

• Crystal Clemmys

• Dashing Diademata

• Eloquent Elusor

• Galactic Geochelone

 INSTITUTE OF TECHNOLOGY

28

Table 2. ROS2 distributions delivered until August 2021. [9]

Distro name Release Data EOL date Ubuntu version

Galactic Geochelone May 23rd, 2021 November 2022
Ubuntu 20.04 Foxy Fitzroy June 5th, 2020 May 2023 (LTS)

Eloquent Elusor November 22nd, 2019 November 2020

Ubuntu 18.04 Dashing Diademata May 31st, 2019 May 2021 (LTS)

Crystal Clemmys December 14th, 2018 December 2019

Bouncy Bolson July 2nd, 2018 July 2019
Ubuntu 16.04 Ardent Apalone December 8th, 2017 December 2018

Figure 18. Active ROS 2 distributions. [9]

Figure 17. Active ROS 1 distributions. [9]

 INSTITUTE OF TECHNOLOGY

29

ROS 2 is a software platform for developing robotics applications, also known as a robotics

software development kit (SDK). Importantly, ROS 2 is open source. ROS 2 is distributed under

the Apache 2.0 License, which grants users broad rights to modify, apply, and redistribute the

software, with no obligation to contribute back. ROS 2 relies on a federated ecosystem, in which

contributors are encouraged to create and release their own software. Most additional packages

also use the Apache 2.0 License or similar. Making code free is fundamental to driving mass

adoption - it allows users to leverage ROS 2 without constraining how they use or distribute their

applications. [15]

Table 3. Summary of ROS 2 features compared to ROS 1. [15]

Category ROS 1 ROS 2

Network Transport Bespoke protocol built on
TCP/UDP

Existing standard (DDS), with abstraction
supporting addition of others

Network
Architecture Central name server(roscore) Peer-to-peer discovery

Platform Support Linux Linux, Windows, macOS

Client Libraries Written independently in each
language Sharing a common underlying C library (rcl)

Node vs. Process Single node per process Multiple nodes per process

Threading Model Callback queues and handlers Swappable executor

Node State
Management None Lifecycle nodes

Embedded Systems Minimal experimental support
(rosserial)

Commercially supported implementation (micro-
ROS)

Parameter Access Auxiliary protocol built on
XMLRPC Implemented using service calls

Parameter Types Type inferred when assigned Type declared and enforced

 INSTITUTE OF TECHNOLOGY

30

3 CONFIGURING THE ROS 2 DEVELOPMENT ENVIRONMENT

Before starting to develop with ROS 2, there are a few preliminary preparations that you

should make:

1. Operating System

2. Programming language

3. Installing ROS 2 and Packages

4. Installing visualization and robotic tools

Although ROS has been made to work on a wide variety of systems, in this article I will

explain the details about Ubuntu Linux, a popular and relatively user-friendly Linux distribution.

Ubuntu provides an easy-to-use installer that allows computers to dual-boot between the operating

system they were shipped with (typically Windows or Mac OS X) and Ubuntu itself. It is important

to back up your computer before installing Ubuntu, in case something unexpected happens and the

drive is completely erased in the process.

Even though there are virtualization environments such as VirtualBox and VMware that

allow Linux to run concurrently with a host operating system such as Windows or Mac OS X. The

simulator can be rather compute- and graphics-intensive and might be overly sluggish in a

virtualized environment. I recommend running Ubuntu Linux natively by following the

instructions on the Ubuntu website. Ubuntu Linux can be downloaded freely from

“https://ubuntu.com”.

ROS2 works on Linux Ubuntu, Linux Debian or Linux Gentoo as well as MacOS and

Windows. But Linux Ubuntu installation is the simplest and the one more mature, so it is a more

preferred option.

The ROS 2 application development environment can be used is as follows.

• Hardware: Desktop or laptop using Intel or AMD processor

• Operating System: Linux Ubuntu, Linux Debian, Linux Gentoo, MacOS and Windows

 INSTITUTE OF TECHNOLOGY

31

• ROS 2: Foxy Fitzroy, Humble Hawksbill

• Tools and packages: Rviz, Gazebo, MoveIt, Webots

It would be better to check their official websites of Operating Systems and ROS 2 for the

future updates. They continuously updated and some of version might out of date.

3.1 Installing Operating Systems: Linux

You may be wondering if you could create ROS 2 programs using Windows or even Mac,

instead of Linux. The Linux version of ROS 2 is the most mature of all of them, which means that

you will have less trouble trying to make something to work in ROS 2. The problem here is that

learning ROS 2 has a very stepped curve, so you don’t need to add more confusion to your learning

than the one of ROS 2 itself. You check a lot of recourse about Linux. To make this work easier, I

used ROS 2 Development Studio, which is already a Linux system.

The Windows version of ROS 2 is available as well. You may find confusing to try to make

basic ROS 2 things work properly. There is no detailed information about the use of ROS 2 in

Windows. Under the next topic, I will explain detailed installation explanations and give more

detailed information.

3.2 Programming ROS 2 in Python or C++

As you may know, you can create ROS 2 programs mainly in two programming languages:

Python and C++. Mostly, whatever you can do in ROS 2 with C++, you can do it also with Python.

Furthermore, you can have C++ ROS 2 programs talking to other Python ROS 2 programs in the

same robot. Since the nodes communicate using standard ROS 2 messages, the actual language

implementation of the nodes is not affecting their communication. That is the beauty of ROS 2.

Pros of programming ROS 2 in Python:

 INSTITUTE OF TECHNOLOGY

32

• Is faster to build a prototype. You can create a working demo of your node very fast if you

use Python, because the language takes care of a lot of things by itself, so the programmer

doesn’t have to bother.

• You don’t need to compile and spend endless hours trying to catch a hidden bug. Even if

you can have bugs in Python, the nature of them is a lot easier and faster to catch.

• You can learn Python very fast. You can make short programs for complex things.

• The final code of your node is quite easy to read and understand what it does.

• It is easier to integrate it with web services based on Django. Since Django is based on

Python, you can integrate ROS 2 functions easily in the server calls.

• It is easier to understand some ROS 2 concepts if you use the Python API, because some

complex concepts are hidden for the developer in the ROS 2 Python API. For example,

things like the Callback Queue are handled directly by the ROS 2 Python API.

Cons of programming ROS in Python:

• It runs slower. Python is an interpreted language, which means that it is compiled in run

time, while the program is being executed. That makes the code slower.

• Higher chances of crashing in run time, that is, while the program is running on the robot.

You can have a very silly mistake in the code that won’t be cached until the program runs

that part of the code (in run time).

• Unless you define very clear procedures, you can end with a messy code in a short time if

the project grows. I mean, you need to impose some rules for developing, like indicating

every class you import from which library is, force strong types on any definition of a

variable, etc.

• Doesn’t allow real time applications.

Pros of programming ROS in C++:

• The code runs fast. Maybe in your project, you need some fast code.

 INSTITUTE OF TECHNOLOGY

33

• By having to compile, you can catch a lot of errors during compilation time, instead of

having them in run time.

• C++ has an infinite number of libraries that allow you to do whatever you want with C++.

• It is the language used in the robotics industry, so you need to master it if you want to work

there.

• It is necessary for real time code.

Cons of programming ROS in C++:

• C++ is a lot more complex to learn and master.

• Just creating a small demo of something requires creating a lot of code.

• To understand what a C++ program does can take you a long time.

• Debugging errors in C++ is complex and takes time.

As can be understood from the details above C++ is a good choice for developing robotic

applications in ROS 2 because of its performance, memory management, library support, and

compatibility. Therefore, I used C++ language in my study.

3.3 Installing ROS 2

Robots must be programmed to be useful. It is useless for a robot to be a mechanical prodigy

without providing it with software that processes the information from the sensors to send the

correct commands to the actuators to fulfil the mission for which it was created. This chapter

introduces the middleware for programming robots with ROS 2.

Pre-requisites that you must meet before trying to get into ROS. If you want to develop for

ROS based robots, you need to know in advance how to program either in C++ or Python. Also,

you must be comfortable using the Operating System Linux or other system.

Installing from binary packages or from source will both result in a fully functional and

usable ROS 2 install. Differences between the options depend on what you plan to do with ROS 2.

 INSTITUTE OF TECHNOLOGY

34

Binary packages are for general use and provide an already-built install of ROS 2. This is great for

people who want to dive in and start using ROS 2 as-is, right away.

Linux users have two options for installing binary packages:

• Debian packages

• “fat” archive

Installing from Debian packages is the recommended method. It’s more convenient because

it installs its necessary dependencies automatically. It also updates alongside regular system

updates. However, you need root access in order to install Debian packages. If you don’t have root

access, the “fat” archive is the next best choice.

MacOS and Windows users who choose to install from binary packages only have the “fat”

archive option (Debian packages are exclusive to Ubuntu/Debian).

Building from source is meant for developers looking to alter or explicitly omit parts of ROS

2’s base. It is also recommended for platforms that don’t support binaries. Building from source

also gives you the option to install the absolute latest version of ROS 2.

Next thing I need to do is to set my system up so I can get ROS2 installed in a machine which

to develop my programs and practice. Basically, two options to set up a machine for programming

for robots with ROS2.

1. Install ROS2 in your local computer. As I mention before several options are available for

different operating system like Linux Ubuntu, Linux Debian, Linux Gentoo, MacOS and Windows.

2. Use online ROS Development Studio (ROSDS) which already provides everything

installed and setup for any type of computer and requires only a web browser.

 INSTITUTE OF TECHNOLOGY

35

By completing these preliminary preparations, you will have a solid foundation for

developing with ROS 2. You will be ready to start building and testing your own robotic

applications.

3.3.1 Installing ROS 2 Foxy Fitzroy to Linux Ubuntu

The section explains how to install ROS 2 Foxy Fitzroy in Linux. ROS 2 works on Linux

Ubuntu, Linux Debian or Linux Gentoo as well as MacOS and Windows. As up today, April 2023

on Ubuntu website the latest Ubuntu 22.04.2 LTS version is available for desktop PCs and laptops.

For a guide on how to install Ubuntu on a windows computer. It covers two options:

removing completely the Windows partition substituting it by Ubuntu or making a dual boot where

you can have both systems working on the same machine (you decide which operating system to

use on boot time).

Once you have an Ubuntu system working in your computer, you need to install ROS2 on it.

I am going to cover how to install the latest release, ROS2 Foxy Fitzroy. Those instructions are a

simplification from the original instructions published by Open Robotics.

Step 1. Set Locale

Make sure you have a locale which supports UTF-8. If you are in a minimal environment

(such as a docker container), the locale may be something minimal like POSIX. We test with the

following settings. However, it should be fine if you’re using a different UTF-8 supported locale.

locale # check for UTF-8

sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

locale # verify settings

Step 2. Configuration

 INSTITUTE OF TECHNOLOGY

36

The first step is setup your package environment. You will need to add the ROS 2 apt

repository to your system. First ensure that the Ubuntu Universe repository is enabled. Type the

following commands:

sudo apt install software-properties-common
sudo add-apt-repository universe

Now add the ROS 2 GPG key with apt.

sudo apt update && sudo apt install curl -y
sudo curl -Ssl https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o
/usr/share/keyrings/ros-archive-keyring.gpg

Then add the repository to your sources list.

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo
$UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

Step 3. Install Development and ROS Tools

Update your apt repository caches after setting up the repositories.

sudo apt update && sudo apt install -y \
 libbullet-dev \
 python3-pip \
 python3-pytest-cov \
 ros-dev-tools

install some pip packages needed for testing
python3 -m pip install -U \
 argcomplete \
 flake8-blind-except \
 flake8-builtins \
 flake8-class-newline \
 flake8-comprehensions \
 flake8-deprecated \
 flake8-docstrings \
 flake8-import-order \
 flake8-quotes \
 pytest-repeat \

 INSTITUTE OF TECHNOLOGY

37

 pytest-rerunfailures \
 pytest
install Fast-RTPS dependencies
sudo apt install --no-install-recommends -y \
 libasio-dev \
 libtinyxml2-dev
install Cyclone DDS dependencies
sudo apt install --no-install-recommends -y \
 libcunit1-dev

Step 4. Get ROS 2 Code

Create a workspace and clone all repos:

mkdir -p ~/ros2_foxy/src
cd ~/ros2_foxy
vcs import --input https://raw.githubusercontent.com/ros2/ros2/foxy/ros2.repos src

Install dependencies using rosdep

ROS 2 packages are built on frequently updated Ubuntu systems. It is always recommended

that you ensure your system is up to date before installing new packages.

sudo apt upgrade

sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -y --skip-keys "fastcdr rti-connext-dds-5.3.1
urdfdom_headers"

If you’re using a distribution that is based on Ubuntu (like Linux Mint) but does not identify

itself as such, you’ll get an error message like Unsupported OS [mint]. In this case append --

os=ubuntu:focal to the above command.

Step 5. Environment Setup

Sourcing the setup script and set up your environment by sourcing the following file.

Replace ".bash" with your shell if you're not using bash

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html#id5

 INSTITUTE OF TECHNOLOGY

38

Possible values are: setup.bash, setup.sh, setup.zsh
. ~/ros2_foxy/install/local_setup.bash

Step 6. Try Some Examples

If you installed ros-foxy-desktop above you can try Talker-listener examples. In one

terminal, source the setup file and then run a C++ talker:

. ~/ros2_foxy/install/local_setup.bash
ros2 run demo_nodes_cpp talker

In another terminal source the setup file and then run a Python listener:

. ~/ros2_foxy/install/local_setup.bash
ros2 run demo_nodes_py listener

You should see the talker saying that it’s Publishing messages and the listener saying I

heard those messages. This verifies both the C++ and Python APIs are working properly.

3.3.2 Using the ROS 2 Development Studio (ROSDS)

This is by far the easiest way to start with ROS 2. The ROS Development Studio (ROSDS)

is an online development platform provided by The Construct to allow people develop for ROS 2

fast and without caring about the details under the hood.

Figure 19. The ROS Development Studio (ROSDS) by The Construct. [16]

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html#id7
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html#id8

 INSTITUTE OF TECHNOLOGY

39

The Construct’s ROSDS is widely used by universities and research centres worldwide

because they don’t require the students to install anything in their computers, especially when that

requires to partition the hard disk with different operating systems. [16]

The ROSDS provides a complete development environment as if you had everything

properly configured in your computer. The advantages are:

• You don’t need to install anything in your computer.

• You can use Windows, Mac, or Linux based computers. So don’t worry about the system

of your computer.

• If something you write breaks the ROS system, you don’t care because just by re-starting

the ROSject, the ROS system gets re-started to its initial state.

• You can create projects for many different distributions: Foxy, Humble, etc…

• You can share your ROS code with a single link and the code will work the same way to

anybody who receives the link (including simulations, datasets, and documentation).

3.4 Installing MoveIt 2 Packages

MoveIt can be defined as Motion Planning Framework. Easy-to-use open-source robotics

manipulation platform for developing commercial applications, prototyping designs, and

benchmarking algorithms.

MoveIt 2 is the robotic manipulation platform for ROS 2, and incorporates the latest advances

in motion planning, manipulation, 3D perception, kinematics, control, and navigation.

Alternatively, you can easily use any robot that has already been configured to work with MoveIt.

There is list of robots running MoveIt on ROS on website to see whether MoveIt is already

available for your robot. Otherwise, you can setup MoveIt to work with your custom robot.

• Install MoveIt 2 packages: You will need to install the MoveIt 2 packages. You can do this

using the following command in your terminal:

 INSTITUTE OF TECHNOLOGY

40

sudo apt-get install ros-<ros2-distro>-moveit

Replace <ros2-distro> with the name of your ROS 2 distribution (e.g. foxy or humble).

• Build MoveIt 2 from source (optional): If you want to build MoveIt 2 from source, you can

clone the MoveIt 2 repository from GitHub and build it using colcon. Here are the

commands you can use:

mkdir -p ~/moveit2_ws/src
cd ~/moveit2_ws/src
git clone https://github.com/ros-planning/moveit2.git
cd ..
rosdep install --from-paths src --ignore-src -r -y
colcon build

• Verify the installation: To verify that MoveIt 2 is installed correctly, you can launch the

MoveIt 2 demo. Use the following command in your terminal:

ros2 launch moveit2_tutorials move_group_interface_tutorial.launch.py

This will launch the MoveIt 2 demo, which will allow you to control a simulated robot arm

using MoveIt 2. By following these steps, you can install MoveIt 2 and start using it to plan and

control robot manipulation in ROS 2.

3.5 Installing Gazebo

Gazebo is an open-source 3D robotics simulator. It integrated the ODE physics engine,

OpenGL rendering, and support code for sensor simulation and actuator control.

Gazebo brings a fresh approach to simulation with a complete toolbox of development

libraries and cloud services to make simulation easy. Iterate fast on your new physical designs in

realistic environments with high fidelity sensors streams. Test control strategies in safety and take

advantage of simulation in continuous integration tests. [17]

https://en.wikipedia.org/wiki/OpenGL

 INSTITUTE OF TECHNOLOGY

41

Gazebo can use multiple high-performance physics engines, such as ODE, Bullet, etc. (the

default is ODE). It provides realistic rendering of environments including high-quality lighting,

shadows, and textures. It can model sensors that "see" the simulated environment, such as laser

range finders, cameras (including wide-angle), Kinect style sensors, etc. [18]

Gazebo is a popular open-source simulation environment that is commonly used in robotics

research and development. Here are the steps you can follow to use Gazebo with ROS 2:

• Install Gazebo: The first step is to install Gazebo on your system. You can download the

latest version of Gazebo from the official Gazebo website. Make sure to choose the version

that is compatible with your operating system.

• Install ROS 2: If you haven't already, you will need to install ROS 2 on your system. You

can download the latest version of ROS 2 from the official ROS 2 website.

• Install Gazebo-ROS 2 packages: Next, you will need to install the Gazebo-ROS 2 packages

that allow ROS 2 to communicate with Gazebo. You can install these packages using the

following command in your terminal:

sudo apt-get install ros-<ros2-distro>-gazebo-ros-pkgs

You can Replace <ros2-distro> with the name of your ROS 2 distribution (e.g. foxy or
humble).

• Launch Gazebo and ROS 2: To launch Gazebo and ROS 2 together, you can use the

following command in your terminal:

gazebo --verbose worlds/empty.world

This will launch Gazebo with an empty world. You can then launch your ROS 2 nodes and

start sending commands to the simulated robot.

https://en.wikipedia.org/wiki/Open_Dynamics_Engine
https://en.wikipedia.org/wiki/Bullet_(software)
https://en.wikipedia.org/wiki/Laser_range_finder
https://en.wikipedia.org/wiki/Laser_range_finder
https://en.wikipedia.org/wiki/Kinect

 INSTITUTE OF TECHNOLOGY

42

3.6 Installing RViz

Rviz, abbreviation for ROS visualization, is a powerful 3D visualization tool for ROS. It

allows the user to view the simulated robot model, log sensor information from the robot's sensors,

and replay the logged sensor information. RVIZ is a ROS graphical interface that allows you to

visualize a lot of information, using plugins for many kinds of available topics.

Differences between RViz and Gazebo is basically RViz shows you what the robot thinks is

happening, while Gazebo shows you what is really happening.

Install RViz 2 packages: You will need to install the RViz 2 packages. You can do this using

the following command in your terminal:

You can Replace <ros2-distro> with the name of your ROS 2 distribution (e.g. foxy or humble).

By following this step, you can install RViz 2 and start using it for 3D visualization in ROS 2.

sudo apt-get install ros-<ros2-distro>-rviz2

 INSTITUTE OF TECHNOLOGY

43

4 CONTROL A COLLABORATIVE ROBOT ARM IN ROS 2 PLATFORM

The UR3e collaborative robot is a small, lightweight, and flexible robotic arm designed for

safe and efficient interaction with humans in various industrial and service applications. It is one

of the products in the Universal Robots line of collaborative robots, which are known for their ease

of use, versatility, and safety features.

The UR3e robot arm has six degrees of freedom, meaning it can move in six different

directions. Its compact size and lightweight design make it easy to integrate into existing

production lines or workspaces, and it can be easily moved between different tasks or locations as

needed.

One of the key features of the UR3e robot arm is its collaborative capability. It is designed

to work safely alongside humans, without the need for safety barriers or cages. This is made

possible through a range of safety features, including built-in force sensing, speed and proximity

monitoring, and the ability to stop or slow down if it encounters a person or object.

The UR3e robot arm is also highly adaptable and can be programmed to perform a wide

range of tasks, from simple pick-and-place operations to more complex assembly and

manufacturing processes. It can be easily programmed using the Universal Robots graphical user

interface, which requires no prior programming experience.

Overall, the UR3e collaborative robot is a powerful and versatile tool that can help improve

efficiency, productivity, and safety in a wide range of industrial and service applications.

Table 4. Specifications for the Universal Robots e-Series robots.

 UR3e UR5e UR10e UR16e
Reach 500 mm 850 mm 1300 mm 900 mm
Payload 3 kg 5 kg 10 kg 16 kg
Footprint Ø128 mm Ø149 mm Ø190 mm Ø190 mm
Weight 11.2 kg 20.6 kg 33.5 kg 33.1 kg

 INSTITUTE OF TECHNOLOGY

44

4.1 Dynamic Model

The dynamic model of the robot manipulator relates the actuator torques to the motion of the

robot manipulator. It contains a set of kinematic parameters such as the position and the orientation

of the joints and a set of dynamic parameters such as masses, centre-of-mass positions, and inertia

components. The robot arm is a 6 degree-of-freedom (DOF) serial-link articulated robot

manipulator which means that the robot links are connected in series and the joints admit rotary

motion of the links.

The dynamic model of the UR3e robot arm can be used to analyse the robot's performance,

optimize its motion, and develop control algorithms for different tasks. It can also be used to design

and test new components and systems for the robot arm, and to evaluate the impact of changes in

the robot's configuration on its performance.

4.1.1 Robot Kinematics

The kinematic model describes the relation between joint angles q and the position and

orientation x of the end-effector. The forward kinematics describes the transformation Γ(.) from

joint angles to the end-effector position and orientation, and the inverse kinematics describes the

transformation from the end-effector position and orientation to the joint angles. The forward

kinematics can be represented as joint angles.

Figure 20. UR3e robot arm joints (6 DOF)

 INSTITUTE OF TECHNOLOGY

45

Table 5. The Denavit–Hartenberg parameters of UR3e robots are shown as below. [19]

UR3e
Kinematics Theta

[rad]
a [m] D [m] Alpha

[rad]
Dynamics Mass

[kg]
Center of Mass[m]

Joint 1 0 0 0.15185 π/2 Link 1 1.98 [0, -0.02, 0]
Joint 2 0 -

0.24355
0 0 Link 2 3.4445 [0.13, 0, 0.1157]

Joint 3 0 -0.2132 0 0 Link 3 1.437 [0.05, 0, 0.0238]
Joint 4 0 0 0.13105 π/2 Link 4 0.871 [0, 0, 0.01]
Joint 5 0 0 0.08535 -π/2 Link 5 0.805 [0, 0, 0.01]
Joint 6 0 0 0.0921 0 Link 6 0.261 [0, 0, -0.02]

The forward kinematics can be represented as

x = Γ(q) (4.1)

and the inverse kinematic is given:

q = Γ−1(x) (4.2)

The kinematic model is derived using Denavit–Hartenberg (DH) convention or its modified

variant. The kinematic parameters of the UR3e robots are listed in Table 4 and illustrated on a

UR3e robot in figure 21.

The system dynamics are represented by the equations of motion which can be expressed

according to:

M(q)q̈ + C(q, q̇)q̇ + G(q) + u f = u, (4.3)

 INSTITUTE OF TECHNOLOGY

46

where q is the vector of joint coordinates, M(q) describes the inertia matrix, C(q, q̇)q̇

considers coriolis and centripetal torques, while G(q) includes gravitational loads. The robot is

driven by the torque vector u, while additional external forces or torques are not considered in this

paper. Mechanical losses in the joints are considered by the friction torque u f. The equations of

motion can be evaluated by the recursive Newton–Euler algorithm based on mechanical

parameters.

Corresponding kinematic and mass properties are provided by the universal robots and are

summarized in Table 4. Different payloads are additionally implemented as a point mass ml at the

position r1 with respect to the flange of the robot. Thus, the adapted mass 𝐦𝐦�𝟔𝟔 and centre of gravity

 𝐫𝐫�𝟔𝟔 of link 6 are determined according to:

 𝐦𝐦�𝟔𝟔 = 𝐦𝐦𝟔𝟔 + 𝐦𝐦𝐥𝐥 ; 𝐫𝐫�𝟔𝟔 = 𝐦𝐦𝟔𝟔𝐫𝐫𝟔𝟔 + 𝐦𝐦𝐥𝐥𝐫𝐫𝐥𝐥
𝐦𝐦𝟔𝟔𝐦𝐦𝐥𝐥

 (4.4)

One relevant mechanical characteristic of the actuators related to the system dynamics is the

reduced inertia, which is included in M(q). It is assumed that the weight of the actuators is included

Figure 21. UR3e robot arm in its home position with the kinematic parameters

 INSTITUTE OF TECHNOLOGY

47

in the weights of the links provided by the manufacturer, thus, the reduced rotational inertia must

be considered additionally. Furthermore, mechanical losses are considered in the drive train. A

simple model describing the corresponding joint friction considers Coulomb and viscous friction

with the coefficients Bc and Bv, respectively, and is given by [20]

uf =Bc sgn(q̇) + Bv q̇ (4.4)

If an external wrench fext ϵ RN is applied at the end–effector, the resulting torques at the joints are

u = JT(q). fext (4.5)

with J(q) the kinematic Jacobian of the manipulator. For free motion u =fext = 0.

4.1.2 Kinematic Model

The robot to a kinematic skeleton of its axes assuming, without any loss of generality, that

the base point is situated at the world origin: (0, 0, 0) with standard coordinate directions x-axis:

(1, 0, 0), y: (0, 1, 0) and z: (0, 0, 1). The robot has no tool end effector attached; therefore, the target

is assumed at the front face centre point of the flange.

Figure 22. UR3e robot arm standard coordinate directions

 INSTITUTE OF TECHNOLOGY

48

The zero joint angle position J1..6 = (0, 0, 0, 0, 0, 0) → x-axis: (1, 0, 0), y-axis: (0, 0, 1),

z-axis: (0, -1, 0) for UR seen below as the horizontal pose is different than its home position which

is J1..6 = (0, -90, 0, -90, 0, 0) → x-axis: (-1, 0, 0), y-axis: (0, -1, 0), z-axis: (0, -1, 0)) seen

below as the upright pose.

4.2 Gazebo Model

I mentioned before to make process easy, I used online ROS Development Studio (ROSDS)

which already provides everything installed and setup for any type of computer and requires.

To start the simulation, need to source workspace. Bellow codes will start to gazebo

simulation:

source ~/simulation_ws/devel/setup.bash
roslaunch ur_e_gazebo ur3e.launch

Figure 23. UR3e robot arm zero and home positions

 INSTITUTE OF TECHNOLOGY

49

It should be able to see the simulation and control everything as if it was the real robot.

4.3 Test Moveit2

Before starting with the robot movement, let's check that Moveit2 runs correctly. For this

action, you will need 3 steps:

Step 1. Launch the Parameter Bridge

Setup launch the parameter bridge between ROS 1 and ROS 2, run below codes to build the

bridge. The topics that bridged:

source ~/catkin_ws/devel/setup.bash
roslaunch load_params load_params.launch
source /home/simulations/ros2_sims_ws/install/setup.bash
ros2 run ros1_bridge parameter_bridge __name:=parameter_bridge

Also, we can check ros2 topic list to control is bridged or not.

Figure 24. Gazebo UR3e collaborative Robot simulation interface.

 INSTITUTE OF TECHNOLOGY

50

ros2 topic list

/clock
/joint_states
/parameter_events
/rosout
/tf
/tf_static

Step 2. Launch the Action Bridge

I need to bridge between ROS 1 and ROS 2. Action servers that I need from ROS 1 in order

to with the arm and gripper controller. Bellow commands for the action bridge.

source /opt/ros/noetic/setup.bash
source /home/simulations/ros2_sims_ws/install/setup.bash
ros2 launch start_bridge start_bridge.launch.py

To check for action list:

ros2 action list

/arm_controller/follow_joint_trajectory

/gripper_controller/gripper_cmd

 INSTITUTE OF TECHNOLOGY

51

We can check arm controller and gripper connected. In this case I want control and

communicate with arm controller only. Plan and execute trajectories for your robot using the

MoveIt2 RVIZ environment and for the script in C++ can be found in Appendix A.

Step 3. Launch Moveit 2

To start Moveit 2 package and Rviz so that I have Moveit2 graphical interface.

source ~/ros2_ws/install/setup.bash
ros2 launch my_moveit2_config my_planning_execution.launch.py launch_rviz:=true

Figure 25. ROS 2 package at the code editor.

 INSTITUTE OF TECHNOLOGY

52

Here, on the planning section I changed to Goal State to “Home position”. It is final position

for robot arm to reach. Final position show as orange colour and moving direction show as dark

purple colour image of arm. I planned the trajectory as show Figure 22. position after that when

click execute button it will give command to RViz.

Figure 26. Returning the arm to the previous position in MoveIt2.

Figure 27. MoveIt 2 graphical interface package first positioning of the collaborative robot arm

 INSTITUTE OF TECHNOLOGY

53

For now, robotic arm has not move at all on RViz. In order to move the arm, I need to execute

the trajectory and it will be executed in the simulation as well.

Figure 29. Visualization of the collaborative robot arm on Gazebo

Figure 28. Visualization of the collaborative robot arm using with ROS MoveIt2 visualisation tool RViz

 INSTITUTE OF TECHNOLOGY

54

5 CONCLUSION AND FUTURE WORK

In conclusion, the collaborative robot arm was successfully capable to move in the ROS 2

Foxy Fitzroy environment, simulated in the Gazebo software. First trajected at the ROS MoveIt2

visualisation tool RViz then the necessary adjustments are made for the collaborative robot arm to

take its initial position at the virtual environment. When final planning is complete, it was executed

on MoveIt2 graphical interface package and simulated in the Gazebo software. This study was

programmed with C++ and the help of repository ROS 1, ROS 2 and MoveIt2 open-source

documentation. And ROS 2 Development Studio was used to make this study easy and fast.

In this study, it could plan and execute trajectories for your robot using the MoveIt2 RVIZ

environment. But this is not the typical case. For the future goal to improve this study, robot arm

will control complex movement with the intended scripts.

 INSTITUTE OF TECHNOLOGY

55

DECLARATION

on authenticity and public assess of final master’s thesis

Student’s name : Ibrahim Malli
Student’s Neptun ID : BLD9OB
Title of the document : Development of the Control of a Robotic Arm Using ROS2

Year of publication : 2023
Department : MSc Mechanical Engineering

I declare that the submitted final master’s thesis is my own, original individual creation. Any parts
taken from another author’s work are clearly marked and listed in the table of contents.

If the statements above are not true, I acknowledge that the Final examination board excludes me
from participation in the final exam, and I am only allowed to take final exam if I submit another
final essay/thesis/master’s thesis/portfolio.

Viewing and printing my submitted work in a PDF format is permitted. However, the modification
of my submitted work shall not be permitted.

I acknowledge that the rules on Intellectual Property Management of Hungarian University of
Agriculture and Life Sciences shall apply to my work as an intellectual property.

I acknowledge that the electric version of my work is uploaded to the repository system of the
Hungarian University of Agriculture and Life Sciences.

Gödöllő, 2023, May 2.

 Student’s signature

 INSTITUTE OF TECHNOLOGY

56

STATEMENT ON CONSULTATION PRACTICES

As a supervisor of IBRAHIM MALLI, BLD9OB, I here declare that the final

essay/thesis/master’s thesis/portfolio1 has been reviewed by me, the student was informed about

the requirements of literary sources management and its legal and ethical rules.

I recommend/don’t recommend2 the final essay/thesis/master’s thesis/portfolio to be defended in

a final exam.

The document contains state secrets or professional secrets: yes no*3

Place and date: Gödöllő, 2023, May, 9.

 Internal supervisor

1 Please select applicable and delete non-applicable.
2 Please underline applicable.
3 Please underline applicable.

 INSTITUTE OF TECHNOLOGY

57

6 REFERENCES

[1] B. Williams, “An Introduction to Robotics,” Ohio University, Ohio, 2021.

[2] Wikipedia, “Robotic arm,” [Online]. Available: https://en.wikipedia.org/wiki/Robotic_arm.
[Accessed April 2023].

[3] Hirata The Global Production Engineering Company, “Industrial Robot,” [Online].
Available: https://www.hirata.co.jp/en/products/items/archives/170. [Accessed April 2023].

[4] ABB, “YuMi® - IRB 14000 | Collaborative Robot,” ABB, [Online]. Available:
https://new.abb.com/products/robotics/robots/collaborative-robots/yumi/irb-14000-yumi.
[Accessed April 2023].

[5] Association for Advancing Automation (A3), “Cylindrical,” Association for Advancing
Automation (A3), [Online]. Available: https://www.automate.org/products/cylindrical.
[Accessed April 2023].

[6] www.robots.com, “RobotWorx,” [Online]. Available:
https://www.robots.com/articles/starting-it-off-spherical-robots. [Accessed April 2023].

[7] MSI TEC, “What is a Parallel Robot?,” Omron, [Online]. Available:
https://msitec.com/robotics/parallel-robots/. [Accessed April 2023].

[8] Y. Pyo, H. Cho, R. Jung and T. Lim, ROS Robot Programming, Seoul,: ROBOTIS Co.,Ltd.,
2017.

[9] Robot Operating System, “ROS,” [Online]. Available: https://www.ros.org/. [Accessed
April 2023].

[10] D. Serrano, “Introduction to ROS – Robot Operating System,” NATO Science &
Technology Organization, 2015.

[11] github, “ROS 2 - Version 2 of the Robot Operating System (ROS) software stack,”
Repository. [Online]. [Accessed April 2023].

[12] I. Saito, “APIs,” March 2016. [Online]. Available: http://wiki.ros.org/APIs. [Accessed April
2023].

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler and A.
Ng, “ROS: an open-source Robot Operating System,” Stanford University, California,
2009.

 INSTITUTE OF TECHNOLOGY

58

[14] ROS, “ROSCon,” [Online]. Available: https://roscon.ros.org/2023/. [Accessed April 2023].

[15] S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall, “Robot Operating System
2: Design, Architecture, and Uses In The Wild,” Science Robotics, 2022.

[16] R. Tellez, “ROS 2 Developers Guide,” The Construct Sim, Catalonia, 2021.

[17] Open Robotics, “Gazebo,” Open Robotics, [Online]. Available:
https://staging.gazebosim.org/home. [Accessed April 2023].

[18] E. Ackerman, “Latest Version of Gazebo Simulator Makes It Easier Than Ever to Not Build
a Robot,” IEEE Spectrum, 2016.

[19] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based
on Matrices,” The Journal of Applied Mechanics, vol. 22, no. 2, p. 7, 2021.

[20] K. Lynch and F. Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge:
Cambridge University Press, 2017.

[21] Robots.com, “RobotWorx, T.I.E Tennessee Industrial Electronics,” Kuka, [Online].
Available: https://www.robots.com/robots/kuka-kr-700-pa. [Accessed April 2023].

[22] L. Hall, “https://www.nasa.gov,” NASA , 7 August 2017. [Online]. Available:
https://www.nasa.gov/feature/nasa-looks-to-university-robotics-groups-to-advance-latest-
humanoid-robot. [Accessed April 2023].

[23] Open Robotics, “The ROS Ecosystem,” Open Robotics, [Online]. Available:
https://www.ros.org/blog/ecosystem/. [Accessed April 2023].

[24] Open Source Robotics Foundation, “Open Robotics,” [Online]. Available:
https://www.openrobotics.org/. [Accessed April 2023].

[25] The Construct, “The Construct,” [Online]. Available: https://app.theconstructsim.com.
[Accessed April 2023].

 INSTITUTE OF TECHNOLOGY

59

7 APPENDIX

C++ Scripts

Plan and execute trajectories for your robot using the MoveIt2 RVIZ environment.

Planning a Trajectory

There is a difference between planning and executing a trajectory. So, in this first part, you

will see how to plan a trajectory with C++.

test_trajectory.cpp

#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>

#include <moveit_msgs/msg/display_robot_state.hpp>
#include <moveit_msgs/msg/display_trajectory.hpp>

#include <moveit_msgs/msg/attached_collision_object.hpp>
#include <moveit_msgs/msg/collision_object.hpp>

#include "rclcpp/rclcpp.hpp"
#include <string>

static const rclcpp::Logger LOGGER = rclcpp::get_logger("move_group_demo");
static const std::string PLANNING_GROUP_ARM = "ur_manipulator";

class TestTrajectory : public rclcpp::Node {
public:
 TestTrajectory(std::shared_ptr<rclcpp::Node> move_group_node)
 : Node("test_trajectory"),
 move_group_arm(move_group_node, PLANNING_GROUP_ARM),
 joint_model_group_arm(
 move_group_arm.getCurrentState()->getJointModelGroup(
 PLANNING_GROUP_ARM)) {

 this->timer_ =
 this->create_wall_timer(std::chrono::milliseconds(500),
 std::bind(&TestTrajectory::timer_callback, this));

 } // end of constructor

 INSTITUTE OF TECHNOLOGY

60

 // Getting Basic Information
 void get_info() {

 RCLCPP_INFO(LOGGER, "Planning frame: %s", move_group_arm.getPlanningFrame().c_str
());
 RCLCPP_INFO(LOGGER, "End-effector link: %s", move_group_arm.getEndEffectorLink().
c_str());
 RCLCPP_INFO(LOGGER, "Available Planning Groups:");
 std::copy(move_group_arm.getJointModelGroupNames().begin(), move_group_arm.getJoi
ntModelGroupNames().end(),
 std::ostream_iterator<std::string>(std::cout, ", "));

 }

 void current_state() {
 RCLCPP_INFO(LOGGER, "Get Robot Current State");

 current_state_arm = move_group_arm.getCurrentState(10);

 current_state_arm->copyJointGroupPositions(this->joint_model_group_arm,
 this->joint_group_positions_arm);
 }

 void plan_arm_joint_space() {

 RCLCPP_INFO(LOGGER, "Planning to Joint Space");

 //joint_group_positions_arm[0] = 0.00; // Shoulder Pan
 joint_group_positions_arm[1] = -2.50; // Shoulder Lift
 joint_group_positions_arm[2] = 1.50; // Elbow
 joint_group_positions_arm[3] = -1.50; // Wrist 1
 joint_group_positions_arm[4] = -1.55; // Wrist 2
 //joint_group_positions_arm[5] = 0.00; // Wrist 3

 move_group_arm.setJointValueTarget(joint_group_positions_arm);

 bool success_arm = (move_group_arm.plan(my_plan_arm) ==
 moveit::planning_interface::MoveItErrorCode::SUCCESS);

 }

 // Timer Callback function
 void timer_callback() {

 this->timer_->cancel();
 get_info();
 current_state();
 plan_arm_joint_space();
 }

private:
 moveit::planning_interface::PlanningSceneInterface planning_scene_interface;
 std::vector<double> joint_group_positions_arm;

 INSTITUTE OF TECHNOLOGY

61

 moveit::planning_interface::MoveGroupInterface::Plan my_plan_arm;
 rclcpp::TimerBase::SharedPtr timer_;

 moveit::planning_interface::MoveGroupInterface move_group_arm;

 const moveit::core::JointModelGroup *joint_model_group_arm;

 moveit::core::RobotStatePtr current_state_arm;

}; // End of Class

int main(int argc, char **argv) {
 rclcpp::init(argc, argv);
 rclcpp::NodeOptions node_options;
 node_options.automatically_declare_parameters_from_overrides(true);
 auto move_group_node =
 rclcpp::Node::make_shared("move_group_demo", node_options);

 rclcpp::executors::SingleThreadedExecutor planner_executor;
 std::shared_ptr<TestTrajectory> planner_node =
 std::make_shared<TestTrajectory>(move_group_node);
 planner_executor.add_node(planner_node);
 planner_executor.spin();

 rclcpp::shutdown();
 return 0;
}

First of all, we define a couple of static variables for the logger system and for the planning

group of our arm, which is named ur_manipulator:

static const rclcpp::Logger LOGGER = rclcpp::get_logger("move_group_demo");
static const std::string PLANNING_GROUP_ARM = "ur_manipulator";

We define a class named TestTrajectory, which inherits from Node:

class TestTrajectory : public rclcpp::Node

Next we find the constructor of the class:

TestTrajectory(std::shared_ptr<rclcpp::Node> move_group_node)
 : Node("pick_and_place"),
 move_group_arm(move_group_node, PLANNING_GROUP_ARM),
 joint_model_group_arm(
 move_group_arm.getCurrentState()->getJointModelGroup(
 PLANNING_GROUP_ARM)) {

this->timer_ =
 this->create_wall_timer(std::chrono::milliseconds(500),

 INSTITUTE OF TECHNOLOGY

62

 std::bind(&TestTrajectory::timer_callback, this));

}

As you can see, we need to initialize in the constructor 3 things:

• A Node objects.

• A MoveGroupInterface object, in this case move_group_arm.

• A JointModelGroup object, in this case joint_model_group_arm.

Pay attention to the MoveGroupInterface, which allows you to communicate with MoveIt2.

It can be set up using just the name of the planning group you would like to control and plan for.

Finally, also inside the constructor, we create a Timer object timer_.

Next we find the get_info() method:

void get_info() {

 RCLCPP_INFO(LOGGER, "Planning frame: %s", move_group_arm.getPlanningFrame().c_str
());
 RCLCPP_INFO(LOGGER, "End-effector link: %s", move_group_arm.getEndEffectorLink().
c_str());
 RCLCPP_INFO(LOGGER, "Available Planning Groups:");
 std::copy(move_group_arm.getJointModelGroupNames().begin(), move_group_arm.getJoi
ntModelGroupNames().end(),
 std::ostream_iterator<std::string>(std::cout, ", "));

}

Here we get some data about our MoveIt2 setup. This is not mandatory for the planning, but

it can be very useful to make sure everything is configured as it should. Specifically, you are getting

data about:

• The name of the frame in which the robot is planning.

• The current end-effector link

• The available Planning Groups

 INSTITUTE OF TECHNOLOGY

63

Next we find the current_state() method:

void current_state() {
 RCLCPP_INFO(LOGGER, "Get Robot Current State");

 current_state_arm = move_group_arm.getCurrentState(10);

 current_state_arm->copyJointGroupPositions(this->joint_model_group_arm,
 this->joint_group_positions_arm);
}

What we are doing here is to get the current state of the robot. Then we copy the values of

the variable joint_model_group_arm (which contains the position value of each joint) into the

variable joint_group_positions_arm.

Next we find the plan_arm_joint_space() method:

void plan_arm_joint_space() {

 RCLCPP_INFO(LOGGER, "Planning to Joint Space");

 //joint_group_positions_arm[0] = 0.00; // Shoulder Pan
 joint_group_positions_arm[1] = -2.50; // Shoulder Lift
 joint_group_positions_arm[2] = 1.50; // Elbow
 joint_group_positions_arm[3] = -1.50; // Wrist 1
 joint_group_positions_arm[4] = -1.55; // Wrist 2
 //joint_group_positions_arm[5] = 0.00; // Wrist 3

 move_group_arm.setJointValueTarget(joint_group_positions_arm);

 bool success_arm = (move_group_arm.plan(my_plan_arm) ==
 moveit::planning_interface::MoveItErrorCode::SUCCESS);

}

Here we are doing a couple of important things:

• First, we set the desired position values of the joints. In this case, we are setting the joint

values of the home position.

 INSTITUTE OF TECHNOLOGY

64

• Second, we set these new values as the new target using the setJointValueTarget method.

• Finally, we call the plan() method of the move group interface to plan the trajectory.

Finally we have the timmer_callback() method

void timer_callback() {

 this->timer_->cancel();
 get_info();
 current_state();
 plan_arm_joint_space();
 }

Here we just call the different methods previously defined to perform the planning pipeline.

Also, we cancel the timer so that it's only executed 1 time.

At the end of the class, you can find the definition of all the different variables that are

needed:

private:
 moveit::planning_interface::PlanningSceneInterface planning_scene_interface;
 std::vector<double> joint_group_positions_arm;
 moveit::planning_interface::MoveGroupInterface::Plan my_plan_arm;
 rclcpp::TimerBase::SharedPtr timer_;

 moveit::planning_interface::MoveGroupInterface move_group_arm;

 const moveit::core::JointModelGroup *joint_model_group_arm;

 moveit::core::RobotStatePtr current_state_arm;

};

Finally we have the main() function:

int main(int argc, char **argv) {
 rclcpp::init(argc, argv);
 rclcpp::NodeOptions node_options;
 node_options.automatically_declare_parameters_from_overrides(true);
 auto move_group_node =
 rclcpp::Node::make_shared("move_group_demo", node_options);

 INSTITUTE OF TECHNOLOGY

65

 rclcpp::executors::SingleThreadedExecutor planner_executor;
 std::shared_ptr<TestTrajectory> planner_node =
 std::make_shared<TestTrajectory>(move_group_node);
 planner_executor.add_node(planner_node);
 planner_executor.spin();

 rclcpp::shutdown();
 return 0;
}

Here we are creating a ROS2 node and adding this node to

a SingleThreadedExecutor executor. Then, we spin this executor until somebody terminates the

program.

Create the Files and Launch.

a. Inside your ros2_ws, create a new package named moveit2_scripts with some

dependencies.

source /opt/ros/foxy/setup.bash
cd ~/ros2_ws/src
ros2 pkg create moveit2_scripts --dependencies rclcpp rclcpp_action moveit_core movei
t_ros_planning moveit_ros_planning_interface interactive_markers geometric_shapes con
trol_msgs moveit_msgs

Inside this package, create a new file named test_trajectory.cpp and copy the code you've just

seen above inside this file.

cd ~/ros2_ws/src/moveit2_scripts/src
touch test_trajectory.cpp

b. Inside the package, also create a launch file to launch the program, called

test_trajectory.launch.py.

cd ~/ros2_ws/src/moveit2_scripts
mkdir launch
touch launch/test_trajectory.launch.py

Paste the code below into this launch file:

 INSTITUTE OF TECHNOLOGY

66

test_trajectory.launch.py

import os
import yaml
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument
from launch.substitutions import Command, FindExecutable, LaunchConfiguration, PathJo
inSubstitution
from launch_ros.actions import Node
from launch_ros.substitutions import FindPackageShare
from ament_index_python.packages import get_package_share_directory

def load_file(package_name, file_path):
 package_path = get_package_share_directory(package_name)
 absolute_file_path = os.path.join(package_path, file_path)

 try:
 with open(absolute_file_path, "r") as file:
 return file.read()
 except EnvironmentError: # parent of IOError, OSError *and* WindowsError where a
vailable
 return None

def load_file2(file_path):
 """Load the contents of a file into a string"""
 try:
 with open(file_path, 'r') as file:
 return file.read()
 except EnvironmentError: # parent of IOError, OSError *and* WindowsError where av
ailable
 return None

def load_yaml(package_name, file_path):
 package_path = get_package_share_directory(package_name)
 absolute_file_path = os.path.join(package_path, file_path)

 try:
 with open(absolute_file_path, "r") as file:
 return yaml.safe_load(file)
 except EnvironmentError: # parent of IOError, OSError *and* WindowsError where a
vailable
 return None

def get_package_file(package, file_path):
 """Get the location of a file installed in an ament package"""
 package_path = get_package_share_directory(package)
 absolute_file_path = os.path.join(package_path, file_path)
 return absolute_file_path

def generate_launch_description():

 INSTITUTE OF TECHNOLOGY

67

 declared_arguments = []
 # UR specific arguments
 declared_arguments.append(
 DeclareLaunchArgument(
 "safety_limits",
 default_value="true",
 description="Enables the safety limits controller if true.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(
 "safety_pos_margin",
 default_value="0.15",
 description="The margin to lower and upper limits in the safety controlle
r.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(
 "safety_k_position",
 default_value="20",
 description="k-position factor in the safety controller.",
)
)
 # General arguments
 declared_arguments.append(
 DeclareLaunchArgument(
 "description_package",
 default_value="ur_e_description",
 description="Description package with robot URDF/XACRO files. Usually the
argument \
 is not set, it enables use of a custom description.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(
 "description_file",
 default_value="ur3e_robot.urdf.xacro",
 description="URDF/XACRO description file with the robot.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(
 "moveit_config_package",
 default_value="my_moveit2_config",
 description="MoveIt config package with robot SRDF/XACRO files. Usually t
he argument \
 is not set, it enables use of a custom moveit config.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(

 INSTITUTE OF TECHNOLOGY

68

 "moveit_config_file",
 default_value="ur3e.srdf",
 description="MoveIt SRDF/XACRO description file with the robot.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument(
 "prefix",
 default_value='""',
 description="Prefix of the joint names, useful for \
 multi-robot setup. If changed than also joint names in the controllers' confi
guration \
 have to be updated.",
)
)
 declared_arguments.append(
 DeclareLaunchArgument("launch_rviz", default_value="true", description="Launc
h RViz?")
)

 # Initialize Arguments
 safety_limits = LaunchConfiguration("safety_limits")
 safety_pos_margin = LaunchConfiguration("safety_pos_margin")
 safety_k_position = LaunchConfiguration("safety_k_position")
 # General arguments
 description_package = LaunchConfiguration("description_package")
 description_file = LaunchConfiguration("description_file")
 moveit_config_package = LaunchConfiguration("moveit_config_package")
 moveit_config_file = LaunchConfiguration("moveit_config_file")
 prefix = LaunchConfiguration("prefix")
 launch_rviz = LaunchConfiguration("launch_rviz")

 robot_description_content = Command(
 [
 PathJoinSubstitution([FindExecutable(name="xacro")]),
 " ",
 PathJoinSubstitution([FindPackageShare(description_package), "urdf", desc
ription_file]),
 " ",
 "safety_limits:=",
 safety_limits,
 " ",
 "safety_pos_margin:=",
 safety_pos_margin,
 " ",
 "safety_k_position:=",
 safety_k_position,
 " ",
 "name:=",
 # Also, ur_type parameter could be used, but then the planning group name
s in YAML
 # configs have to be updated!
 "ur",

 INSTITUTE OF TECHNOLOGY

69

 " ",
 "prefix:=",
 prefix,
 " ",
]
)
 robot_description = {"robot_description": robot_description_content}

 # MoveIt Configuration
 srdf_file = load_file('my_moveit2_config', 'config/ur3e.srdf')
 robot_description_semantic = {"robot_description_semantic": srdf_file}

 kinematics_yaml = load_yaml(
 "my_moveit2_config", "config/kinematics.yaml"
)

 # MoveGroupInterface demo executable
 move_group_demo = Node(
 name="test_trajectory",
 package="moveit2_scripts",
 executable="test_trajectory",
 output="screen",
 parameters=[
 {'use_sim_time': True},
 robot_description,
 robot_description_semantic,
 kinematics_yaml,
],
)

 nodes_to_start = [move_group_demo]

 return LaunchDescription(declared_arguments + nodes_to_start)

As you can see, the launch file is very similar to the one used for launching MoveIt2. You

are loading the same parameters, and the only difference is that you are now launching our C++

script. Also, it's unnecessary to start RVIZ this time since you already have it running.

move_group_demo = Node(
 name="test_trajectory",
 package="moveit2_scripts",
 executable="test_trajectory",
 output="screen",
 parameters=[
 {'use_sim_time': True},
 robot_description,
 robot_description_semantic,
 kinematics_yaml,
],
)

 INSTITUTE OF TECHNOLOGY

70

c. Now, update the CMakeLists.txt file to compile everything. First, open the file and add the

following lines to the code:

Add to CMakeLists.txt

Generate the executable
add_executable(test_trajectory
 src/test_trajectory.cpp)
target_include_directories(test_trajectory
 PUBLIC include)
ament_target_dependencies(test_trajectory
 ament_cmake
 rclcpp
 rclcpp_action
 moveit_core
 moveit_ros_planning_interface
 interactive_markers
 moveit_ros_planning
 control_msgs)

Install the executable
install(TARGETS
 test_trajectory
 DESTINATION lib/${PROJECT_NAME}
)

Install the launch file
install(DIRECTORY
 launch
 DESTINATION share/${PROJECT_NAME}
)

You are generating an executable from the file test_trajectory.cpp and installing it alongside

the contents of the launch folder.

d. Now compile our workspace.

cd ~/ros2_ws
colcon build
source install/setup.bash

 INSTITUTE OF TECHNOLOGY

71

e. Now test your new program! First, you'll need to launch the MoveIt2 RVIZ environment.

ros2 launch my_moveit2_config my_planning_execution.launch.py launch_rviz:=true
f. Now, run the code:

source ~/ros2_ws/install/setup.bash
ros2 launch moveit2_scripts test_trajectory.launch.py

You will see how the plan to the home position is computed.

Executing a trajectory

So, at this point, you've seen some methods that allow you to plan a trajectory with C++ code.

But what about executing this trajectory?

You need to call the execute (plan) function from the planning group to execute a trajectory.

For instance, given a plan my_plan, you would execute the planned motion like this:

move_group_arm.execute(my_plan_arm);

By executing this line of code, you will be telling your robot to Execute the trajectory stored in
the my_plan variable.

Also, there's the option to Plan & Execute a motion, just as the GUI provides.

move_group_arm.move();

	Table of Contents
	Table of Figures
	List of Tables
	1 INTRODUCTION
	1.1 Robotic Arm
	1.2 Robotic Arm Types
	1.2.1 Cartesian Robot / Gantry Robot
	1.2.2 Collaborative Robot / Cobot
	1.2.3 Cylindrical Robot
	1.2.4 Spherical Robot / Polar Robot
	1.2.5 SCARA Robot
	1.2.6 Articulated Robot
	1.2.7 Parallel Robot
	1.2.8 Anthropomorphic / Humanoid Robot
	1.3 Robot Software Platform

	2 ROS: Robot Operating System
	2.1 Why Should We Use the ROS
	2.2 Meta-Operating System
	2.3 Objectives of ROS
	2.4 Components of ROS
	2.5 The ROS Ecosystem
	2.6 History of ROS
	2.7 The ROS Versions

	3 CONFIGURING THE ROS 2 DEVELOPMENT ENVIRONMENT
	3.1 Installing Operating Systems: Linux
	3.2 Programming ROS 2 in Python or C++
	3.3 Installing ROS 2
	3.3.1 Installing ROS 2 Foxy Fitzroy to Linux Ubuntu
	3.3.2 Using the ROS 2 Development Studio (ROSDS)
	3.4 Installing MoveIt 2 Packages
	3.5 Installing Gazebo
	3.6 Installing RViz
	3.7

	4 CONTROL A COLLABORATIVE ROBOT ARM IN ROS 2 PLATFORM
	4.1 Dynamic Model
	4.1.1 Robot Kinematics
	4.1.2 Kinematic Model
	4.2 Gazebo Model
	4.3 Test Moveit2

	5 CONCLUSION AND FUTURE WORK
	6 REFERENCES
	7 APPENDIX

