Analysis the Antimicrobial Effect of *Streptomyces* Strain Collection Against Resistant Bacteria by using Gene Mapping

Jiayi Ma¹, Harkai Peter²

¹Master student, Magyar Agrár- és Élettudományi Egyetem, Szent István Campus, Akvakultúra és Környezetbiztonsági Intézet, Hungary

* Correspondence:

Harkai Peter Harkai.Peter@uni-mate.hu

Abstract:

In modern society, the increasing prevalence of multidrug-resistant bacteria poses a significant and alarming threat. Among these bacteria, *Pseudomonas aeruginosa* stands out as the most commonly encountered multidrug-resistant bacterium, capable of causing a wide range of diseases. In our study, we focused on analyzing the antibacterial activity of two *Streptomyces* K189 and K145 collected in our lab. Molecular biological identification confirmed them as *Streptomyces rimosus* strains. Our experiments employed three different methods: streak plating, agar diffusion method, and filter paper diffusion method. The results revealed that both strains exhibited selective inhibitory activity against specific strains of *Pseudomonas*. Notably, K189 showed stronger inhibitory effects on P66 and P18 compared to K145, while neither strain showed inhibition against *Pseudomonas aeruginosa* P43. Genomic analysis using the CLC Genomics Workbench Tool identified the presence of OTC resistance genes, including *otrB* and *otrC*, in strains K145T and K189T, suggesting their potential for oxytetracycline production. Further studies are warranted to explore the selectivity mechanism and potential applications of these strains against the specific target strains.

Keywords: *Streptomyces*, molecular biological identification, antibacterial activity, cross-streak method, *Ps. Aeruginosa*, *Streptomyces rimosus*

² tudományos munkatárs , Magyar Agrár- és Élettudományi Egyetem, Szent István Campus, Akvakultúra és Környezetbiztonsági Intézet, Hungary