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1. INTRODUCTION

1.1 Background

Water is an absolutely essential segment of the ecosystem, which is an indispensable factor of

existence, and it helps modulate the temperature of the environment (Chaplin, 2001). They are

of  overriding value  in  lengthening all  forms of  life.  Moreover,  water  helps   preserve  the

variety of life in wetland ecosystems by providing habitats to a superfluity of living organisms

(Xie  et  al.,  2018). It  is  not  only  critical  to  ecosystems  as  a  keystone  component  of  the

hydrologic  cycle  but  also  touches  every  aspect  of  our  lives,  such  as  drinking  water,

agriculture, electricity production, recreation, fishing, transportation, and industrial purposes

(Reddy et al., 2021). 

Around the world today, environmental irregularity is seen as the main issue, as a result of

human pressure on environment (Schwarzenbach et al.,  2010). Due to the fast increase in

human population along coastal areas and riverbanks, the habitats of fish and other aquatic

species may be negatively impacted by any changes made to these delicate ecosystems as a

result of human-induced nutrient pollution. Human activities, including intensive farming and

domestic and livestock wastewater discharge, can lead to a rise in the nitrate and phosphate

levels  in  nearby  waters,  cause  the  water  to  fall  asleep,  and  cause  algal  proliferation  that

negatively impacts water clarity, food sources, and habitats (Qin, 2009). 

Nitrate and phosphate are two major nutrients required by living things for their physiological

functions.  However,  if  their  concentration exceeds the advised limit,  they are regarded as

pollutants.  In  addition,  surface  water  with  high  nutrient  loads  (nitrate  and  phosphate)

encourage the growth of water plants but has a negative impact on water quality by promoting

the establishment of algal bloom and foul odours (Ménesguen et al., 2018). This results in a

significant loss of dissolved oxygen in the surface water. The amount of dissolved oxygen in

the surface water decreases dramatically, causing suffocation and the death of aquatic plants

and animals (Yalç et al., 2017; Yona et al., 2023). 

Abnormal  increases  in  nitrate  effluent  in  potable  water  are  also  associated  with  several

disorders of body function, such as breast cancer risk and thyroid diseases in humans (Ward et

al.,  2018).  Besides,  high  phosphate  levels  have  been  linked to  several  clinical  outcomes,

including hypophosphatemia, which raises the risk of cardio-metabolic illnesses. Furthermore,
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excessive phosphate has been implicated in some renal diseases, and long-term exposure to

high-concentration phosphate-containing safe water has been responsible for causing damage

to human accessory organs of digestive system (Mironov et al., 2022).

A sturdy ecosystem is typically indicated by clean water sources. Thus,  water quality sensing

with  advanced  technology  is  an  integral  part  of  taking  care  of  the  environment.  The

requirement for sustainable surface water necessitates ongoing assessments of the quality of

currently available water supplies and associated watersheds under more precise control and

management strategies. Likewise,  the level of  treatment required for human consumption,

agribusiness,  and  factory  operations  demands  an  understanding  of  the  quality  of  water

fountains (Bhateria & Jain, 2016).

Indicators of surface water quality, such as nitrate and phosphate parameters, are typically

found  by  gathering  samples  in  the  field  and  analysing  them in  a  lab.  Since  this  ex-situ

assessment requires hard work and time-consuming procedures, it is not suited for field-based

autonomous operation,  despite  the fact  that  it  gives  excellent  precision (Das et  al.,  2022;

Juncal et al., 2020). Additionally, traditional point sample techniques struggle to detect the

geographical  or  temporal  fluctuations  in  water  quality  that  are  essential  for  thorough

evaluation and management of surface water, and it is not possible to produce a simultaneous

water quality database on a regional scale.  

Conventional methods of quantitative surface water analysis use professional and high-priced

technology with highly skilled personnel to dissect samples taken from the field and sent to

laboratories.  Hence,  environmental  monitoring  has  gradually  entered  the  realm  of  multi-

source  mass  data.  The  use  of  traditional  observational  and  satellite  remote  detection

information for water quality monitoring is no longer sufficient due to the rapid development

of contemporary huge data technology and the communication profession, as well as growing

citizen interest in environmental quality. In this regard, intelligent digital devices show great

potential, providing new possibilities for water quality sensing (Gao et al., 2022).

The  colour  of  surface  water  has  long  been  a  reliable  qualitative  indicator  of  the  water's

quality.  Hence,  color  models  were  developed  for  quantitative  water  quality  variable

measurement. A colour is measured as an amount of radiation reflected or transmitted from a

colour stimulus over the specified wavelength range. Color conveys  spectral information in
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the form of large regions in the red, green, and blue portions of the visible spectrum. Using

the amount of light measured by the detector, the red, green, and blue (RGB) values were

assigned to each pixel. Thus, the RGB values detected by digital imaging technology helps for

water quality monitoring (Goddijn & White, 2006).

Hand-held digital  cameras and smartphone cameras have high surface resolution and time

flexibility  and are not affected by cloudy conditions.  Thus,  they can complement satellite

remote detection technology, which is  affected by cloud concealment (Abdelmalik, 2018).

However, how to make effective quantitative use of the citizen science data acquired from the

handheld cameras and incorporate it into scientific research is a difficult issue to tackle. Due

to  their  greater  photography  features,  software,  and  portability  for  image  processing,

smartphones are the best image capture equipment  (Abughrin et al., 2022). 

1.2 Objectives 

The primary goal of this study was to strengthen the monitoring, evaluation, and governance

of surface water quality and to find out how communities react to smartphone water quality

assessment applications in terms of their efficacy, usefulness, and contentment compared to

conventional  instruments.  Besides,  this  work  focuses  on  how  digital  pictures  taken on

smartphones are used for the investigation of water quality, including the fundamentals of the

technology,  the  tools  used to  capture  images,  the color  spaces used,  and the handling of

research analysis. Moreover, it is a thesis aims to overcome the challenges of successive and

integrated sampling, which turn into a major barrier to the management and monitoring of

water quality. 
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2. LITERATURE REVIEW 

2.1 Electromagnetic Radiation and Light

Our daily lives depend on light, which also improves our living conditions and is a crucial

component  of  optics,  solar  energy,  and  modern  lighting  technologies.  Moreover,

electromagnetic  radiation,  which  includes  not  only  the  ultraviolet,  visible,  and  infrared

regions but additionally the X-ray, gamma-ray, and radio ranges, can also be referred to as

"light" in some contexts (Figure 1.). Depending on the situation, light can have a wide variety

of  meanings.  It  is  described  as  electromagnetic  radiation,  which  used  to  represent  the

ultraviolet, visible, and infrared portions of the electromagnetic spectrum in the sense that

they generally characterized optical radiation. It is a property of all feelings and recognition

that is unique to vision when it is used to express a light stimulus, and it is radiation that is

taken into consideration from the point of view of its capacity to activate the visual system in

humans (Gardi, 2018).

The release or transmission of energy in the form of electromagnetic waves and photons is

known as electromagnetic radiation. Another way to define electromagnetic radiation is as the

emission or transfer of energy from vibrating charged particles that results in a disturbance in

the form of  oscillating electric  and magnetic  fields.  The  term electromagnetic  waves was

coined because electric and magnetic waves constantly coexisted or were linked. Also, it was

discovered that the lines of force for these electric and magnetic waves were always parallel

to one another and parallel to the direction in which the waves were propagating (Figure 2.).
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2.1.1 Interaction of Light with Matter 

In accordance with the connection between the light's wavelength and the intervening matter's

overall size, many miracles can emerge when the light  gets in contact with material.  The

visual detectors in the naked eye can be stimulated by visible light from the spectrum. Light

dispersion and interruption work  together  to  create  a  wide range of  colors.  For  example,

Rayleigh scattering occurs when light waves meet with small interfering particles, such as

when visible light interacts with airborne dust or gas molecules, giving the sky its blue color.

Moreover, when visible light interacts with large molecules like clouds in the atmosphere,

Mie scattering appear which produce the white color of clouds. However, when light interacts

with objects that are large in relation to their wavelength (Crowell, 2000).

The light will either be reflected, refracted, transmitted, absorbed, or scattered based on the

transparency of the substance and the nature of its surface. The exact nature of the substance

will  determine  the  dominant  kind  of  light  engagement;  for  example,  a  polished,  opaque,

colorless solid will exhibit specular reflection, but an opaque, colorful substance will exhibit

diffuse reflection or scattering. The unevenly reflecting material selectively alters the incident

light's energy distribution, producing various hues as a result.

2.1.2 Luminous Intensity and Candela

According to  the luminosity  function,  a  conventional  description of  the  sensitivity  of  the

visual  system,  luminous  intensity  in  photometry  is  a  measurement  of  the  wave  length-
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weighted energy that a light source emits in a given direction per unit solid angle. The candela

(cd), a SI unit, represents light intensity. The measuring of visible light as seen by naked eyes

is referred to as  photometry.  The human eye can only perceive the visible portion of  the

spectrum,  and  it  responds  differently  to  light  of  various  spectrum  wavelengths.  Other

wavelengths of light that have comparable radiant intensity have a lower luminous intensity.

The candela (unit cd) was first defined in the International Units of Measurement (SI), which

also saw the unit's name change from "candle" to "candela." The candela derives its name

from the illumination of a "standard candle," but it  now has a more precise meaning.  The

candela measures the amount of light emitted in the range of a (three-dimensional) angular

span (Blaise & Pétry, 1968).

2.2 Light Distribution and Colour Dimensions

2.2.1 Colour Measurement

The aim of color measurement is to quantify the visual perception of color in order to describe

it  objectively.  A color  measuring  instrument  defines  color  numerically  in  terms  of  color

attributes.  Color  measurement  plays  a  key  role  in  color  management,  for  example,  in

measuring the color difference between sample and proof, formulating special inks, etc. A

color perception phenomenon is based on three components: a light source, an object, and the

viewer,  i.e.,  the  human eye.  A color  is  measured as  the  amount  of  radiation reflected  or

transmitted from a color stimulus over the specified wavelength range. The tristimulus values

can then be calculated by multiplying the spectral reflectance (or transmittance) factor of the

color sample by the spectral power distribution of the light source and the color matching

functions (Hoang et al., 2005).

2.2.2 Human Perception

The different wavelengths in the visible spectrum can also directly stimulate different colors

in the human visual system. A color stimulus generally has a spectral power distribution that

varies with wavelength across the visible spectrum, producing a color or sensation that is a

shade of or mixture of the colors. Stimuli containing all the visible wavelengths in roughly

equal proportions appear white. passing white light through a glass prism, which spreads the

light  out  into  a  spectrum  of  colors.  However,  white  light  can  also  be  produced  by

superimposing discrete monochromatic lights. For example, white light can be produced by
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superimposing red, blue, and green lights in certain proportions, known as the trichromatic

theory of human color vision (Maloney & Brainard, 2010; Zhang et al., 2013).

2.2.3 Colorimetry and CIE System 

The  fields  of  science  and  technology  known  as  colorimetry  are  used  to  measure  and

physically  characterize  how  people  see  color.  Visual  colorimetry  and  photoelectric

colorimetry  are  the  two  major  categories  of  colorimetry.  By  using  visual  colorimetry,

concentration can be determined by visually monitoring the target solution's color change.

Since  it  is  difficult  to  discriminate  between  different  colors  with  the  unaided  eye,

photoelectric colorimetry has higher measuring precision. Photoelectric colorimetry is used in

many different  sectors and makes use of  tools  like spectrophotometers  and photoelectric

colorimeters, which are more accurate at determining concentration and at resolving color

changes.  The foundation for  estimating the visual  matching  between two color  stimuli  is

provided by colorimetry. In 1931, the CIE, the International Commission on Illumination,

established a colour specification system. The 1931 CIE system is derived from a series of

colour-matching studies to define a standard observer. (Clydesdale & Ahmed, 1978).

 2.2.4 Color Models

Colour spaces (RGB, LAB, XYZ, CMYK, HSB/HSL,YUV and others) are theoretical three-

dimensional  constructs that  facilitate the identification of colours and their characteristics.

They are created by defining colour-variation in terms of three quantifiable range-values and

using  this  framework  to  determine  the  placement  of  a  colour  spectrum  within  a  three-

dimensional space. 

2.2.4.1 RGB Color Model

It's common to use a unit cube to represent the color space for software display technologies.

Each of the three orthogonal coordinate axes in a 3-dimensional model is given a color (red,

green, or blue). Below is a picture of one such cube, along with several important colors and

their locations (Figure 3.). The colors on each quadrant of the color cube vary from those in

which that element has no contribution to those that are fully saturated. The color cube is

solid, and any location (or color) inside it is described by a triple of three numbers, or an R, G,

and B. All of the gray scales are represented by the cube's diagonal line, which runs from

black to white (0, 0, 0 to 1, 1, 1). The red, green, and blue colors are each represented by one
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of the three dimensions. Several color palettes, such as those in the 0-256 range, are used in

practice by various computer software. In other words, the RGB cube displays less colors than

what our eyes can see because it is within our perception space. The RGB model is frequently

employed in digital goods and is  extensively utilized in manufacturing output (Fan et al.,

2021).

2.2.4.2 CIELAB Colour Model

Thousands of colors are perceived by the human eye. Nevertheless, it won't always be capable

of identifying colors from one another properly.  Depending on your viewing position and

lighting,  you might  sense  variations  in  things  that  are  the  same color  as  one  another  or

interpret two colors that are only slightly different as the same. When discussing color, this

makes communication difficult. Manufacturers and designers require methods to measure a

color's  attributes  and  establish  the  numerical  difference  between  shades  in  order  to

consistently replicate the exact desired hue.

The  three  components  that  the  CIELAB color  system  employs  to  assess  true  color  and

compute color differences are represented by the letters L*, a*, and b* in the CIE acronym.

Whereas  a*  and  b*  indicate  chromaticity  with  no  set  numerical  bounds,  L*  represents

brightness on a scale of 0 to 100, ranging from black to white. Negative a* is  correlated

with green, positive a* is correlated with red, negative b* is correlated with blue, and positive

b* is correlated with yellow (Figure 4.).
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CIELAB, or CIE L*a*b*, is a device-independent, three-dimensional color space that enables

accurate measurement and comparison of all perceivable colors using three color values. In

this color space, numerical differences between values roughly correspond to the amount of

change humans  see  between colors.  The  International  Commission on Illumination (CIE)

developed the L*a*b* color model in 1976 with the intent of creating a standard for color

communication. When creating the CIELAB color space, the CIE drew inspiration from the

CIE 1931 XYZ color space, as well as the Munsell color system. All of these models use three

data points to define and plot a color (Zhang & Wandell, 1996).

2.2.4.3 CIE 1931-XYZ Color Model 

The first technique for describing light colors or basic colors scientifically, the CIE XYZ color

space, was created in 1931 by the International Commission on Illumination. It was the initial

definition of color that was broadly accepted as an international standard, and it continues to

be the "best model" today. The three different types of color-sensing cells that make up the

retina of our eyes are activated to varying degrees, or CIE XYZ values, which are typically

defined between 0% and 100% (Figure 5.).
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The CIE XYZ was created so that the value of Y served as a representation of  a color's

brightness and employed the values of X, Y, and Z. To be able to plot the colors on the CIE

gamut diagram, the values of X, Y, and Z were utilized to obtain the variables x and y. It is

more difficult to represent the CIE XYZ color space as a solid than the RGB color cube.

Nonetheless,  it  would  presumably  resemble  the  RGB color  cube  rather  closely,  but  with

obvious color aberrations (Viscarra Rossel et al., 2006).

2.2.4.4 CMYK Color Model

 CMYK (cyan, magenta, yellow, black), which is made up of three secondary colors: cyan,

magenta, and yellow (Figure 6b.). It is a subtractive color model as opposed to RGB since the

final color is produced by taking the basic colors away from a white background. To increase

the density range and enable the created color's accessible color gamut, black or the key (K) is

added.  Similar  to  RGB,  CMYK  is  a  tool-dependent  color  model,  which  means  that  the

features of each data gathering equipment may change the values that are recorded. In simple

terms, various scanners or cameras may provide different registered color intensities. Color

intensities with 8 bits of color depth ranged from 0 to 255. For example, absolute white is a

combination of [0 0 0 0] in the CMYK color model (Cantrell et al., 2010).
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2.2.4.5 HSV Color Model

The hue (H), saturation (S), and value (V) components of the HSV color model are three

separate  parameters  that  together  make  up  a  multidimensional  description  of  the  color

rainbow. The color is defined by the hue component as an angular value between 0° and 360°.

For instance, the coordinates for red, green, and blue are 0°, 120°, and 240°, respectively. The

degree of saturation or chroma (S), commonly referred to as purity, denotes the level of color,

which can range from 0 to 100% or 0 to 1%. From 0 to 1, where 0 denotes complete black and

1 denotes 100% luminosity with no black incorporated at all,  the value of V specifies the

brightness or strength of the color.  Figure 6c., shows an example of a color geometric cone

that can be used to represent these three elements, where hue is represented by a specific point

on the color wheel. The height of the color combination cone is used to represent value, while

the cone's radius represents saturation. (Thajee et al., 2018)
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2.2.5 Digital Color and Computer Vision 

Computer vision is an understanding of chromatic light by electronic/digital, as opposed to

biological  perception.  Because  of  this,  human  vision  is  not  described  in  detail,  only  the

physics of digital sensors are. The collection of images and handling are the two phases that

make up computer vision. Measured response spectra showed that these digital cameras are

basically  three-band radiometers.  The  response  values  in  the  red,  green,  and  blue  bands,

quantified  by  RGB  values  of  digital  images  of  the  water  surface,  were  comparable  to

measurements of irradiance levels at red, green, and blue wavelengths of water leaving light.

2.2.5.1 Image Capture and Processing

Digital cameras and RGB values use an array of complementary metal oxide semiconductors

(CMOS) to collect high-resolution light intensity data. Each detector in the array acts as a

small light sensor (i.e., produces a voltage proportional to the amount of light incident on the

detector). A color camera is simply the same detector array covered by a Bayer filter. The

Bayer  filter  has  a  repeating  pattern  of  colored  filter  elements.  This  provides  spectral

information in the form of large bands in  the red,  green, and blue portions of the visible

spectrum. Using the amount of light measured by each detector, each pixel is assigned a red,

green, and blue (RGB) value between 0 and 255  (Wilkes et al.,  2016). The Bayer filter is

transparent to infrared light; therefore, cameras have an additional infrared filter to prevent

infrared light from reaching the detector array (Figure 7.). 
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Electronic image capture corresponds to film photography in that it records a picture of an

area or thing by using changes in photo-sensitive material. Digital sensors, on the other hand,

provide electrical output from internal arrays of photo-sensitive cells rather than a chemical

foundation. Red, green, and blue are the basic additive colors of chromatic light, and there are

three different types of cells that measure each of their respective wavelength ranges (Figure

6).  When  a  cell  group  is  exposed,  they  produce  electrical  output  proportionate  to  the

brightness and color of the light. This electrical output is then estimated as the color value of a

single square subspace of the image utilizing additional information from the neighboring

cells. 

2.3  Water Quality Parameters

2.3.1  Water Quality

Manipulation of water resources for economic evolution and human support circumstances

have all suffered as an outcome of declining water quality and ecosystem health. It has grown

to  be  one  of  the  most  significant  obstacles  to  ensuring  sustainable  development  in  the

impacted territory. It is difficult to simply assert if water is excellent or terrible; analytical

tests are needed to describe water quality. Therefore, the decision is often based on the use of

the water, whether it is for consumption, agriculture, or some other purpose. Communities are

also at health risk when there is poor water clarity.

Serious environmental and ecological difficulties must be adequately addressed in order to

progress toward sustainable development, notwithstanding the global economy's rapid growth

and the crucial role that technology plays in these issues. If sustainable water development is

to be realized, the current universal issue of water resources must be incorporated into citizen

principles and procedures. Hence, the role of citizens in water management for water quality

is to set the intention for all stages of the regime, direct surface water regulatory processes,

and  implement  environmental  management  systems.Therefore,  technology  dependence  is

crucial; it requires a green and digital approach (Jiang et al., 2020). 

2.3.2 Nitrate

Nitrogen is one of the most important nutrients for guaranteeing food supply and security.

Besides, more nitrogen fertilizers are required due to the population's constant growth.  For
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both plants and animals, nitrogen is a crucial nutrient, and it can be found in the environment

as nitric oxide, nitrite, and nitrate. These are consistently found in typical samples, including

dietary, environmental, and biological samples (Eickhout et al., 2006) . However, Swaney et

al. (2018) justified that nitrate is present in water both naturally and as a result of exogenous

inputs, such as animal and human waste, soil organic matter runoff from agricultural soils,

and soil runoff from other types of soil. The main causes of nitrate contamination of surface

water  resources  are  anthropogenic  activities  and  uncontrolled  discharges  from businesses,

farms,  and  sewage  treatment  faciliti  (Quemada  &  Gabriel,  2016).  When  these  growths

disintegrate, they add to the organic load in the water body and may deplete dissolved oxygen,

which may result in acute deoxygenation. The badsmelling, black heaps of decaying material

deposited on the shores have been a source of public complaint for many years and have

caused  the  loss  of  many  aquatic  species.  (Carolina,  2002) concluded  that  surface  water

eutrophication has emerged as one of the main barriers to sustainable economic development.

Ward et al. (2018) described that consumption of water contaminated with nitrates has only

been strongly associated with the presence of "blue baby syndrome"  in infants (which may

eventually lead to mental retardation) as an acute effect, leaving out other side effects that

require  attention,  despite  the  fact  that  nitrates  have  been  determined  to  be  carcinogenic

components due to the endogenous formation of N-nitroso compounds. Additionally,  Shao-

ting et al. (2007) verified that thyroid gland can be affected by a variety of pollutants known

as  endocrine  disruptors,  which  are  substances  that  can  interfere  with  the  synthesis  of

hormones.  To  date,  it  is  known  that  nitrates  may  disrupt  the  amount  of  iodine  uptake,

frequently leading to hypothyroidism and affecting the metabolic functions of the organism at

all stages of development, placing a significant burden on the health of those exposed. Mar &

Qbal (2007) highlighted the impact of consumption of water contaminated with nitrates and

its  effects  on  the  thyroid  gland  in  humans,  concluding  that  nitrates  could  act  as  a  true

endocrine disruptor. 

In  the United States,  the  allowable contamination threshold for  nitrate  in  public  drinking

water sources is 10 mg/l as nitrate-nitrogen. This amount is about similar to the World Health

Organization's  (WHO, 2008) nitrate guideline of 50 mg/l (multiply NO3-N mg/l by 4.427).

Nitrate can be found in a variety of foods, with the largest concentrations seen in various

green foliage and root crops.  Regulation is constantly restricting mineral nutrients flows in
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order to reduce their influence on surface waters. Similarly, nitrate releases must be kept to a

minimum. The natural nitrate concentration in surface waters is normally less than 4.43 mg/l,

while the maximum allowable level of nitrate in drinking water is 50 mg/l . In surface waters,

standard values varied from 0.005 to 0.5 mg/l nitrate-nitrogen (USEPA, 1994). The amounts

can  rise  based  on  the  geology  of  the  area,  land  management,  and  fertilizer  application.

Nevertheless, except at extremely high levels  nitrate is relatively non-toxic to fish and poses

no health risk. (Stone & Thomforde, 2004)

2.3.3 Phosphate

Almost  all  of  the phosphorus  (P)  in  water  is  in  the form of  phosphate (PO4).  As a  vital

ingredient for living creatures, phosphorus (P) plays an important role in the growth of aquatic

life. Nevertheless, in an aqueous environment, a fully oxidized version of phosphorus, i.e.,

phosphate, plays a significant role in the eutrophication cycle. Phosphates are classified into

three types: orthophosphates, condensed phosphates, and organic phosphates. Phosphates are

usually  referred  to  as  orthophosphates  in  water  quality  assessments.  Abnormal  phosphate

levels caused by the widespread use of phosphate-based insecticides, fertilizers, beverages

and  detergents,  as  well  as  purposeful  or  unintentional  improper  human  impacts,  are

recognized  to  be  hazardous  to  natural  waters.  This  eventually  leads  to  a  decrease  in  the

amount  of  dissolved oxygen in  water,   followed by the destruction  and rotting of  marine

animals and the deterioration of water quality (Heidari-Bafroui et al., 2021).

Surface water phosphate overloading is a worldwide issue that endangers both the marine

environment  and  human  and  animal  health.  Correll  (1998)  attributed  elevations  in  algal

development in surface water to wastewater discharges and farmland run-off fertilizer.  He

proposed  phosphorus  as  the  culprit  and  anticipated  lake  algal  outbreaks.  Since  then  this

threshold  has  been  recognized  as  crucial,  despite  numerous  exceptions.  The  role  of

phosphorus in the occurrence of algal blooms has received a great deal of attention. In surface

water,  phosphorus is  coupled with both living and dead microscopic matter.  Even though

phosphorus  is  an  essential  plant  ingredient  that  is  often  in  short  supply,  contributing

phosphorus  to  water  stimulates  plant  (algae)  development. Algal  growth  can  be  either

unwanted, as in pure streams, or beneficial, as in fish farming ponds. Surface waters typically

have a range of 0.005 to 0.5 mg/l (Lazur et al., 2013)
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2.3.4 Source of Nitrate and Phosphate

2.3.4.1 Agricultural Activity

Cropping  system and  fertilizer  management  inputs  are  two manageable  factors  that  have

varying effects on nitrate losses, according to Randall & Mulla (2001). Furthermore, Liu et al.

(2022) demonstrated that these row crops leak significantly more nitrate when compared to

perennial  crops;  at  the  moment,  it  is  difficult  to  grow  many  perennials  with  adequate

economic returns. However, Randall & Mulla came to the conclusion that enhancing fertilizer

management by delivering nitrogen and phosphate at the optimal rate and timing, as well as

properly  crediting  past  legume  crops  and  animal  manure  treatments,  will  also  result  in

decreased nutrient losses. Furthermore, studies have indicated that, when compared to nutrient

management techniques, tillage systems have little impact on nitrate and phosphate losses.

Moreover, Mng’ong’o et al. (2022) studied, overuse of fertilizers necessitates the acquisition

of  more land away from sensitive areas  for  the  public's  and  the environment's  health.  In

addition to, excessive and careless fertilization, build-up, and eutrophication to the water. 

Manure and wastewater runoff from animal farms made up more than 50% of the nitrate in

surface water, which is well-known potential source of many different pathogenic organisms

that can sicken people, especially through drinking contaminated water according to (Cao et

al.,  2022).  They noticed that residential  and livestock operations consistently  release large

amounts of contaminants into natural waters, causing physiochemical and biological changes

in surface water. Additionally, it increases water turbidity, which contributes to contamination

of the water. Besides, they concluded that physical and chemical changes brought on by such

anthropogenic activities in lakes may have contributed to fish mortality in lakes. 

2.3.4.2 Urban Activity

Water  use  for  drinking,  industry,  agriculture,  recreation,  and  other  reasons  is  negatively

impacted  by  nutrient  enrichment.  Rout  et  al.  (2021) justified  that  household  dirty  water

management is ineffective due to the massive amounts of inorganic garbage evacuated from

homes, hotels, restaurants, schools, and retail center on a regular basis.  Peng et al. (2022)

stated that urban activities are the primary sources of phosphorus and nitrogen in the aquatic

environment.  They  concluded  that  non-point  nutrient  inputs  are  difficult  to  quantify  and

control  because  they  result  from  activities  spread  across  large  areas  of  land  and  are
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unpredictable in time due to weather influences. In addition to what  Hamilton et al. (2016)

observed, these nutrients have a variety of negative effects on aquatic ecosystems, including

toxic algal  blooms, oxygen depletion, fish kills,  extinction of species crucial  to trade and

recreation, loss of coral reefs and aquatic plant communities, and others. 

2.3.4.3 Land Use Change

Huang et al. (2014) justified that the land on the earth's surface that was converted from forest

vegetation  to  farms  and  urban  areas  now supports  crucial  human  livelihoods.  Moreover,

essential  natural  resources  and  ecosystem services  are  required  as  the  population  grows.

However,  Yona et  al.  (2022)  agreed that  excessive  growth  and  extensive  farming  disrupt

ecological  integrity,  deplete  soil  fertility,  cause significant  soil  degradation,  and discharge

large amounts of fertilizer and debris into aquatic ecosystems. Furthermore, Yona et al. added

that untenable field management, such as habitat destruction, forest loss, sedimentation, poor

crop management, ongoing ecosystem change, and human impacts, causes poor water quality

and quantity, limits access to food, and thus affects plankton abundance.

2.4 Water Quality Measurement 

2.4.1 Analytical Techniques

To slow and  reverse  the  deterioration  of  water  quality,  it  is  necessary  to  strengthen  the

monitoring,  evaluation, and governance of  surface water quality.  Analytical  method water

quality monitoring mainly relies on collecting water samples on site and sending them to the

laboratory  to  measure  various  water  quality  parameters.  This  Analytical  method has  the

advantage  that  many  different  water  quality  parameters  can  be  measured.  Analytical

techniques in laboratory practice are characterized by high precision, accuracy, sensitivity, and

selectivity  (Das et al., 2022). However,  Pires et al. (2014)  criticized the disadvantage  that

water quality data can only be collected at limited time points, and the sampling interval is

usually  long.  This  is  because  such  sampling usually  requires  professional  equipment  and

trained technicians, and many of the instruments are expensive, heavy, inconvenient to carry,

and labor-intensive. The collection of water samples,  followed by sample preparation and

laboratory analysis, is complicated and expensive. 
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2.4.1.1 Colorimetric Technique

It is usual practice to employ a color generating reagent in conjunction with a colorimetric

method  to  assess  the  proportion  of  a  chemical  substance  in  water.  When  the  desired

component and a particular reagent combine, a change in color happens. The key benefits of

this  technology  are  that  it  is  affordable  to  analyse  and  is  unique  to  different  molecules.

Scientists created a colorimetric method for estimating the amount of soluble phosphate in

saltwater. It became the accepted method for colorimetric phosphorus determination. In this

procedure   phosphate ions react with an ammonium molybdate reagent solution containing

ascorbic acid and antimony (III) to create a blue phosphomolybdate complex (Acta & Muri,

1962).

Sajidu (2007) used the salicylate and vanadomolybdophosphoric acid colorimetric methods to

measure phosphates and nitrates in surface water samples. He emphasized that the proportion

of the colored component in the mixture is related to the assessment of the light adsorption

capability  of  the  system  (a  colored  solution).  The  rate  at  which  the  intensity  of

monochromatic light diminishes as the concentration and thickness of the transparent material

(a  colored  solution)  increase  is  directly  related  to  the  light's  intensity.  The  colorimetric

approach relies on determining the optical density of the colored substance, which absorbs

most strongly at 520 m, and the interaction of a water sample with specific reagents. The

findings were found to be precise and repeatable. However, analytical methods call for costly

machinery and labor-intensive processes. The colorimeter is not cheap. Measurements might

be challenging on surfaces that reflect light. In the UV and IR spectrums, it is ineffective. A

colorless compound is not practical and is time-consuming. 

2.4.1.2 Ultraviolet-Visible Technology 

Human economies and development are directly correlated with water resources. The precise

and fast determination of the primary water quality metrics has emerged as a recent research

issue due to the deterioration of the environment for water resources. According to Alves et al.

(2018) research, ultraviolet-visible spectroscopy is a useful instrument for both qualitative and

quantitative  evaluations  of  pollutants  in  water  sources.  Ultraviolet-visible  technology,

combined with a  diverse  array of advanced technological  innovations,  has evolved into a

powerful and effective method for detecting contaminants in aquatic environments due to the

benefits  of  being  highly  accurate,  having  high  recognition  efficiency,  requiring  non-
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destructive sampling, and providing environmental protection.  Additionally, they provided

justification for this by outlining the UV-Vis spectroscopic detection concept for water quality

metrics as well as the approach for modeling and spectral data interpretation. The emission or

absorption spectra of substances are used in spectroscopy as a tool for substance identification

and quantitative measurement. However,  Guo et al. (2020) have been criticized because the

equipment used is large and expensive a large number of reagents are required, resulting in

additional contamination. 

2.4.1.6 Fluorescence technique

Fluorescence  technology  is  a  spectroscopic  examination  method  in  which  the  sample  is

electronically excited by light of a particular wavelength and subsequently emits energy at

various wavelengths. The intended analyte's quantitative and qualitative characterization is

made possible by the wavelength range. In order to assess the concentration of phosphate,

Kröckel et al. (2014) developed a tiny fluorescence detector. The excitation light's disturbance

could be reduced by the detector's ability to capture significant amounts of uniformly emitted

light  in  all  directions.  Using a fluorescence probe,  Zhao et  al.  (2011) described a simple

procedure for phosphate determination. The carbon dots used in the probe were tuned for

europium.  Analytical  procedures  that  use  fluorescence  are  easy  and  quick.  Variations  in

temperature, sample turbidity, pH, photochemical degradation, and direct sunlight intensity all

have an impact on fluorescence intensity. Substances that absorb a portion of the excitement

or emit energy may also have an effect.

The security and purity of water depend greatly on the proper assessment of phosphate. Flavin

mononucleotide, an intracellular form of vitamin B2, was employed as a fluorophore. For the

sensitive and targeted detection of phosphate, a novel "off-on" fluorescent sensing technology

was created, and it demonstrated great fluorescence response and strong discrimination for

phosphate recognition. For the management and routine analysis of nitrates and phosphates,

both  in  water  and  soil  samples,  a  straightforward  and  sensitive  analytical  technique  is

preferred  for  the  aforementioned  reasons.  This  is  despite  the  fact  that  sophisticated

instruments and skilled personnel are typically required for such sampling, and many of the

tools are costly, large, awkward to transport, and labor-intensive (Xu et al., 2023).
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2.4.2 Remote Sensing Technology

2.4.2.1 Satelite Water Quality Detection

An extremely useful method for keeping track of water supplies across various temporal and

spatial scales is remote sensing. Rapid and widespread monitoring of inland and coastal water

quality occurs through the use of remote sensing and near-surface water quality sensors. The

development of satellite remote sensing technology provides a feasible way to monitor water

quality across large areas and long time series, and to further discover the temporal and spatial

distribution characteristics and migration paths of pollutants. Nevertheless, its application is

strongly affected by the satellite revisit  period,  remote sensing data resolution,  and cloud

coverage, among other factors.  Because shallow water and land borders affect the photos,

coastal regions and interior waters cannot employ satellite spatial resolution, which is useful

in shelf seas. Such areas require the use of in-situ or aerial-mounted equipment. Currently, the

optical  properties  of  natural  waters  are  measured  using  narrow-band,  multispectral

radiometers to provide data on a variety of water quality indicators, including chlorophyll,

mineral suspended sediments, and yellow material. However, it  could be expensive to use

relatively complicated multi-spectral sensors (Abdelmalik, 2018).

Today,  many  satellites  with  high  enough  resolution  have  been  used  in  water  quality

monitoring studies. He et al. (2008) concentrated on the water quality assessment of surface

water, which could serve as a secondary supply of drinking water. Water quality recovery

models were constructed and assessed for water quality indicators comprising total nitrogen,

nitrate  nitrogen,  total  phosphorus,  and dissolved phosphorus  using a remote sensing (RS)

technique using Landsat  5 Thematic Mapper (TM) data. The findings demonstrate that in

moderately  contaminated  surface  water  with  a  low remote  sensing reflectance,  there  is  a

statistically relevant link between each water quality metric and remote sensing information.

It was possible to retrieve the nitrate nitrogen content using the right sampling technique for

pixel digital numbers and multiple regression algorithms, as well as the concentrations of total

nitrogen, dissolved phosphorus, and total phosphorus.

Investigators of water resources may be better able to monitor surface waters with the help of

remote  sensing  data.  The  qualitative  characteristics  of  waterbodies,  such  as  suspended

particles,  colored  dissolved  organic  matter,  and  chlorophyll  a,  have  been  extensively

measured using remote sensing technologies (Gholizadeh et al., 2016). Olmanson et al. (2013)
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collected pictures  with excellent  both spatial  and spectral  resolution for  use in  evaluating

optically  active  water  quality  properties  of  surface  water  using  airplanemounted  hyper-

spectral  spectrometers.  Images were  obtained  produced  for  turbidity,  suspended  particles,

chlorophyll, and other water clarity indicators to determine water quality.  They investigated

the use of air carrier remote sensing devices as a practical means of gathering data to assess

surface water's  visually active water quality  parameters pertinent  to  the problem of water

deterioration. Last but  not least,  a better selection of spectral bands than those offered by

Landsat is required to measure conditions of water quality other than clarity. Although the

MERIS and MODIS satellite sensors have these bands, their low spatial resolution means that

they are only useful for very large water bodies. Song et al. (2012) also used a For the distant

determination  of  total  phosphorus,  chlorophyll-a,  and  turbidity  using  specified  sensitive

spectral  parameters,  a  hybrid  approach  integrating  genetic  algorithms  and  partial  least

squares(GA-PLS) was developed.

Midland water  quality  contamination is  viewed as a  significant  environmental  issue.  And

through recovery of visually effective water quality metrics like chlorophyll-a, space-based

remote sensing (RS)  has become a significant  source of  data for  determining the trophic

condition of non-coastal waters. Nevertheless, the application of remote sensing approaches

for  a  global  evaluation  of  the  trophic  condition  of  inland  waters.  Based  on  Moderate

Resolution Imaging Spectroradiometer (MODIS) imaging and the Forel-Ule index, Wang et

al.  (2018) created  a  new  remote  sensing  method  to  evaluate  the  trophic  condition  of

worldwide upcountry water bodies.  First,  the natural water color range from dark blue to

yellowish-brown was divided to determine the FUI using MODIS data. Then, using in-situ

data and MODIS outputs, the connection between FUI and the trophic status index (TSI) was

determined.  In  the  FUI-based  trophic  status  evaluation,  colored  dissolved  organic  matter

(CDOM)-dominated systems were distinguished using the water-leaving reflectance at 645

nm band. The FUI-based trophic state evaluation method was created and used to evaluate the

trophic stages based on the findings. 

Thiemann  & Kaufmann  (2000)  practised  multi-temporal  data  sets  of  the  LISS-III  sensor

mounted on the Indian Remote Sensing Satellite (IRS- 1C) and field reflectance spectra have

been  evaluated  for  predicting  water  quality  parameters  (chlorophyll-a)  in  lakes.  They

contrasted  their  findings  to  laboratory  evaluations  of  in-situ  samples  taken.  The  678  nm
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absorption maximum and the 705 nm reflectance peak were used for quantification from field

reflectance spectra. The spectral height of the green peak, supervised maximum likelihood

classification, and linear spectral unmixing were three approaches that were contrasted for the

assessment  of  the  LISS-III  satellite  data.   Using  the  Geostationary  Ocean  Color  Imager

(GOCI), Huang et al. (2015) supplied greater temporal resolution satellite data to investigate

the hourly changes of algae. They investigated a straightforward regional NIR-red two-band

empirical  method  of  chlorophyll-a  for  Taihu  Lake's  GOCI.  Their  ability  to  observe  the

dynamic  properties  of  algae  that  change quickly is  restricted  by  the inadequate  temporal

resolution of satellite data.

 Al-shaibah et al. (2021) investigate how Landsat TM5, ETM7, and OLI8 pictures may be

used to evaluate the water quality (V-phenol, dissolved oxygen (DO), NH4 -N, and NO3 -N) in

a lake. Indicators of water quality were investigated using multispectral pictures. Also, all

photos had their radiometric and atmospheric corrections made. They all agree that, all in situ

water quality metrics, with the exception of DO, were found to be highly associated with one

another,. The spectral band configurations (blue, green, red, and NIR) obtained from Landsat

imagery  were  statistically  correlated  with  the  in-situ  measurement  techniques  (V-phenol,

dissolved oxygen, NH4-N, and NO3-N), and the regression analysis revealed that there are

significant connections between both the approximated and obtained water quality from the

Satellite image.

With Landsat 5 and Landsat 7 reflectance data (Khattab & Merkel, 2014), straightforward and

precise techniques were established for the recovery of water quality metrics for Mosul Dam

Lake. In place, assessments of the water quality were made. Temperature, turbidity, Secchi

disk,  chlorophyll-a,  nitrate,  nitrite,  phosphate,  total  inorganic  carbon,  dissolved  organic

carbon,  total  dissolved  solids,  and  pH  were  some  of  the  measures  that  were  obtained.

Techniques  for  picture  improvement  have  been  utilized  to  effectively  use  the  reflectivity

spectrum values. The reflectance values of the Landsat 5 and Landsat 7 bands were matched

to  the  field  observations  using  various  band  combinations  using  empirical  techniques.  In

general, the analysis's findings indicated a strong relationship between these models and water

quality indicators.  The assessment between the anticipated characteristics for quality of water

and  the  in-situ  measurements  revealed  that  the  models  utilized  had  a  higher  level  of

predictability.
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Padilla-Mendoza et al. (2023) showed that Sentinel-2 photos can be used to create empirical

models and predict the level of physicochemical water quality indicators, especially nutrients

in  the  wetland  ecosystem.  They  established  significant  correlations  among  the  variables

affecting water quality. The correlations enabled the determination of statistically significant

bands in the multiple linear regression technique implementation to produce empirical water

quality models using reflectance data from Sentinel-2 pictures taken on the same monitoring

day. The findings demonstrate strong relationships between optically active parameters, such

as TSS-Turbidity, which in turn exhibited relationships with optically  inactive parameters,

such as Turbidity-NO3 and TSS-DO, as well as non-optically active parameters, such as TDS-

NO3 and TDS-TP, among themselves. 

2.4.2.3 Aircraft Water Quality Detection

Aircrafts  water  quality  sensors  can  cover  a  large  geographic  area  with  high  temporal

repetition. Bansod et al. (2018) investigated how to recognize water quality metrics in light of

the optical dynamic features of the water by utilizing remotely observed information. Water'

optical and dynamic qualities can provide a clear picture of its  quality, but their accuracy

depends on the tests that are taken from various types of water bodies. They used water bodies

for which hyperspectral band data was collected using the Airborne Visible/Infrared Imaging

Spectrometer  New Generation (AVIRIS-NG).  Different  spectral  indices  that  are  useful  in

assessin chlorophyll-a, turbidity,  and aggregate phosphorus were constructed using ground

truth data and a collection of spectral bands obtained from hyperspectral imaging. 

(Ryu, 2022) showed how an off-the-shelf unmanned aircraft system (UAS, drone) fitted with

the additional  required hardware connections could be used to track the pH, temperature,

electric  conductivity  (EC),  and  dissolved  oxygen  levels  of  surface  water  in  real  time.

Moreover, the UAS-based computer system platform for water quality studies appears to be a

useful  tool  for  advancing  environmental  work,  particularly  for  surface water  with

impairments.

With the addition of cloud cover and higher spatial resolution, UAS images can supplement

satellite data. These traits are especially important for mapping tiny water bodies because the

resolution of satellites prevents local events from being recognized. Unmanned aerial systems

(UAS) have developed into a cutting-edge podium for gathering super-resolution photographs

at  lower  elevations  that  offers  simultaneously  high  spatial  detail  (centimeter-scale)  and
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adjustable temporal resolution (flexible time resolution) at an ever-declining cost (Isgró et al.,

2022).

2.4.2.4 Smartphone Water Quality Detection

Remotely sensed and near-surface earth water quality observation sensors are used rapidly

and widely to monitor the condition of inland and coastal waters. Smartphone monitoring of

water quality by members of the public could offer a real-time assessment of water quality in

addition to conventional test samples. Water samples were processed in a laboratory and also

collected mobile photographs for comparison,  According to Malthus et al. (2020) hydroColor

detects  RGB  reflection  and  EyeOnWater  (IOW)  calculates  the  Forel-Ule  scale,  which

provides a clue as to how the water surface appears visually. They came to the conclusion that

while EOW is a stronger software and is better able to accurately and precisely capture the

color  of  water,  HydroColor  has  great  promise  but  is  limited  by  faults  in  the  observing

approach and errors in the handling of photographs in the smartphone. Furthermore, by stating

that both apps had the ability to generate other water quality parameters from observations of

water color that were adequate and quite accessible.

Monitoring natural resources on various time and space scales is made especially easy by

remote  sensing.  Leeuw  &  Boss.  (2018)  developed  a  color  smartphone  application  that

assesses the remote sensing spectral response of natural water bodies using a smartphone's

camera and supplementary sensors to examine water characteristics. HydroColor makes use

of the three-band radiometer found in the smartphone's digital camera. Three photos must be

gathered in order to meet the standards for radiance. To obtain the card radiance, a gray card

image, a sky image, and a water image are required to get the water radiance. The water's

reflectance  in  the  broad  red,  green,  and  blue  wavelength  bands  is  calculated  using  these

photos to monitor the water quality.  In contrast  to  other water quality camera techniques,

Hydrocolor's operation is based on radiometric readings rather than image color. As a result,

hydrocolor is a potent device for collecting water's optical data through crowdsourcing.

The Nikon Coolpix 885 and the SeaLife ECOshot are two commonly used digital cameras

that are utilized as in-situ optical equipment for water quality assessment. In essence, these

digital cameras are three-band radiometers, as evidenced by the observed spectral signatures.

The response values at the RGB wavelengths of the water leaving light, as measured by the
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RGB values of digital photographs of the water surface, were identical to determinations of

the irradiance conditions at those wavelengths. Various techniques were used to catch light

that was upwelling from beneath the surface while preventing direct surface reflection. When

compared to earlier measurements made using more conventional narrow-band radiometers, it

was  discovered  that  the  connections  among water  quality  metrics  and  the  RGB ratios  of

photographs of the water surface were reliable. The Harbortronics DigiSnap 2000 time-lapse

control was used to handle the camera, which was installed within the enclosure and peered

down through an optical lens that was about 10 cm below the edge of the water. Additionally,

the  authors  pointed  out  that  the  SeaLife  ECOshot  is  a  waterproof  digital  camera  made

specifically for taking images underwater. The CP885 and ECOshot response spectra were

measured in the UV-1601 double beam spectrophotometer, while the ECOshot was held and

operated  below  the  water's  surface  while  shooting  photographs  (Goddijn-Murphy  et  al.,

2009).

A platform for on-time water quality determination must be rigorously created to ensure that a

smartphone application is  usable to  a certain level,  especially given that  consumers are a

diverse group of individuals with different wants and desires. The outcomes were attained

through quality assessment using a modified Goal Question Metric (GQM) approach, such as

field  testing  and  surveys.  The  inspection  results  demonstrate  the  real-time  water  quality

management  application's  excellent  levels  of  effectiveness  and productivity,  as well  as  its

users'  satisfaction.  But  there were  certain  issues  that  needed  to  be resolved.  The  internet

access must be steady, and the text's sizes ought to be larger. If the GQM model and another

accessibility  model  could  be  integrated,  this  usability  evaluation  may  be  enhanced.  The

questions concentrating on customer perception with smartphone apps were created using the

GQM  model  metrics  for  water  quality  parameters  monitoring  phones  as  a  foundation

(Bokingkito & Caparida, 2021). 

For  environmental  conservation  purposes,  phosphate levels  in  water  should be  constantly

supervised.  Therefore,  a  simple,  portable,  and  accurate  instrument  is  required  to  assess

phosphate levels in the field. In this study, a low-cost dip strip is created for the determination

of low phosphate concentrations in fresh and saltwater.  In this apparatus, the ascorbic acid

reagent was dried on blotting paper to create the detection zone, after which it was followed

by a molybdenum technique wet chemistry procedure. To greatly extend the life of the device
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and increase the repeatability of its function, ammonium molybdate and sulfuric acid were

kept separately in a liquid state. Distilled water and seawater were used to test the gadget

(Heidari-Bafroui et al., 2021).

Monitoring water quality is becoming increasingly dependent on crowdsourced findings from

smart devices. Nonetheless, ensuring and assessing the quality of public generated data is a

critical  task.  A computation  model  was  developed  to  transform  the  photograph's  digital

numbers (DNs) into a spectral curve, and a set of inexpensive reference cards was created to

be positioned in the middle of the image, close to the water's surface. The intrinsic reflectance

and DN of the reference card in the image were used to build a non-linear DN-to-reflectance

model. The water surface reflectance in the same image was then calculated. The method

suggested, which relies on a cellphone camera, may be utilized to accurately and efficiently

calculate  the  remote  sensing  reflectance  and  water  quality  metrics.  Crowdsourcing  is  the

process of gathering data, viewpoints, or creative output from a large number of individuals,

typically online. Through the use of crowdsourcing, businesses may access individuals with a

variety of skills and viewpoints from around the globe while also reducing expenses and time

(Gao et al., 2022).
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3. MATERIAL AND METHOD

3.1. Research site

In Winter 2023, field measurement was carried out at number four (4) fish culturing ponds

(Figure 8.), Gödöllő-Állami telepek (47° 33' 55.53'' N and 19° 22' 5.45'' E), which are located

east of Budapest, Hungary. Moreover, the study site belongs to a temperate region with an

average elevation of 267 m above mean sea level. Into the bargain, the research area receives

an average annual rainfall of 339 mm with an average humidity of 84%, and the annual solar

radiation is  about 1280 kwh/m2 as  well.  Throughout  the year,  January is  the most  humid

month in the study area. Furthermore, the research field has a surface area of 750 m2  (50 m

length by 15 m width) and a maximum depth of 120 cm, while the pond has a capacity of 900

m3 and a flow rate of 15 m3/h (Figure 9.).

The ponds are fed by Rákos-patak (Rákos-creek). The feeding of the reservoirs always arrives

before the effluent of the waste water treatment plant in Gödöllő. The types of fish growing in

the  area  are  Cyprinus  carpio,  C.  carpio,  Abramis  brama,  Carassius  carassius,  Clarias

gariepinus, Sander lucioperca,  and Essox Lucius. However, the water quality in the pond is

impure due to internal adulteration sources (aquaculture) and external contamination sources

(agricultural and urban runoff) from the surrounding areas. 
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Figure 8. Image of Study Area (Gödöllő-Állami telepek). Source: Own 



3.2 Methods and Measurment

3.2.1 eXact iDip Photometer

Conventional measurement was taken by an eXact iDip smart photometer device, which is a

pioneering, compact, capable of measuring different parameters, and water-resistant (IP67)

tester. It contains a tiny sample jar that fills with the test water and then agitates around the

test strip for the particular test to be performed. After a while, pressing the button on the iDip

starts a countdown to ensure the test strip has been in the sample for a sufficient length of

time, and after that, the photometer uses a 525 nm light source to assess how much light can

pass through. The photometer gives two kinds of readings, and a Bluetooth-ready Android

mobile phone has a long-lasting built-in sample cell (Figure 10.). Moreover, this excludes the

separate cell and modifies the test method, which improves accuracy. As well, the results are

finally  displayed  on the  photometer’s  digital  screen and  transmitted  via  Bluetooth  to  the

paired Android smartphone device with the spreadsheet.
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Figure 10. eXact iDip Smart 
Photometer.   source: Web 2, n.d.



3.2.2 Photometric test procedures

To  determine  nitrate  and  phosphate,  the  technique  for  testing  the  water  parameters  is

straightforward and simple to do. Fill the test cavity with a water sample first, then select the

test on the smartphone app and run the process to analyse nitrate and phosphate. Push a button

to take a baseline reading of the water without any of the test strips dissolved in it. After that,

press the button to start the test, and then wait 20 seconds for the timer to count down by

placing the corresponding test sample strip in the test tube and stirring it around in the sample

water. Once the timer counts down, you set the strip aside and have to wait 10 minutes and 2

minutes for nitrate and phosphate, respectively. Finally, the water result is displayed on the

device as well as on the smartphone (Figure 11.).

Check  the  tests  a  couple  of  times.  After  getting  a  few  of  the  test  results,  click  on  an

information link in the app. Since some of the data is calculated based on the results of some

of the specific tests, without a full complement of tests, it couldn’t give a full water report.

The app has a lot of features built into it, definitely with professionals in mind. You can set up

profiles of customers, with different test locations within each customer site. You can also

capture photographs with your phone and attach them to test results. A series of laboratory

tests  was conducted to  determine the camera’s  response to  light  intensity  and its  spectral

sensitivity. 
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Figure 11. eXact iDip Smart 
digital  Photometer Testing Steps 
Source: Web 3, n.d.



The eXact iDip photometer system offers a truly customized system that’s accurate, efficient

(saving money and time), and an environmentally friendly device that uses green chemistry.

Moreover, this device needs a Bluetooth smartphone device to furnish test results. It will not

be enough to provide usable information alone. 

3.2.3 Sample Collection for Analytical Analysis 

Water samples were collected from the surface of the Pond between December 2022, and

March 2023. A total of 31 composite representative samples were collected for this study area

and  analysed  for  determination  of  water  quality  using  a  device  called  the  eXact  iDip

photometer. At this particular reservoir, samples were collected with a 250 ml plastic vessel

from three different parts of the reservoir each day from the surface and taken for analysis.

Thus, these water samples were collected just from the site's surface. Traditional chemical

analyses  were  applied  to  two  common  water  quality  variables,  including  nitrate  and

phosphate.  

3.2.4 Image Acqusition

This current thesis focuses on the method that was used to acquire digital images, derive RGB

values, and relate measurements to water quality parameters. Android smartphone cameras

were used as in situ optical instruments for water quality sensing by taking images.

Photos were collected from the study area parallel to the water sample for analysis. Thirty-one

images were grasped from  December 2022, to March 2023, and the images were selected for

RGB and CIELAB value analysis. During image acquisition, the camera should be pointing

toward the water surface at a viewing zenith angle of 40-45, and the viewing azimuth angle

should be approximately 135 The RGB color  value (0-255) is  obtained by uploading the

image to a colormeter cellphone application. 

To describe the visually-perceived color properties of an image, we do not naturally use the

proportions of red, green, and blue components, but rather terms such as brightness, color, and

color purity.  Within the CIELAB space, a psychometric index of lightness (L*) and two

colour  coordinates  (a*  and  b*)  are  defined.  The  L*  index  is  related  to  the  luminosity;

according to this property, each colour can be considered as equivalent to a member of the
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grey  scale,  i.e.,  between  black  (L=  0)  and  white  (L=100).  where  a  low  number  (0-50)

indicates dark and a high number (51-100) indicates light.  

3.2.3 Nix Quality Control Sensor 

The red, green, and blue (RGB) sectors of an image of a colored sample solution taken by a

digital camera, hand scanner, or cellphone camera are used in the new technological method

known as digital picture detection. A user's initial perception of an item will be shaped by its

color, which is one of the main things they will observe about it. Color scheme has the power

to express a brand's personality and even trigger an emotional reaction from the consumer. A

visible sense of worth and quality is communicated through color. A product's effectiveness

and the bottom line are inevitably impacted by color. 

Nix quality control color sensors (Figure 12.) can be easily integrated into the work cycle of

any measurement. This is due to the Nix QC's exceptional capability to gauge the hue of

practically any substance, including solids, liquids, powders, and gels. High levels of color

reliability are provided by the Nix quality management data logger, a reasonably precise and

cutting-edge technology product that is also incredibly simple to use. In the old days, this

usually  meant  either  hefty  testing equipment  that  was challenging to  utilize or  traditional

swatches that were manually examined.

The use of a digital colorimeter is the current method of color quality control. Despite their

incredible precision, these machines are frequently expensive, challenging to use, and limited

to a lab benchtop due to their large size and fragile parts. The Nix QC color meter, however,

was created with these problems in mind. The Nix QC Color Sensor's user-friendly, easily
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carried-out design can guarantee color uniformity throughout a product's lifespan while also

having  the  precision,  stability,  and  inter-instrument  concordance  to  tackle  even  the  most

challenging color quality control duties. 

3.2.3.1Toolkit Smartphone Application 

The toolkit application, available for Android phones, must be installed on the mobile phone

in order to use the Nix quality control device. Manage and keep an eye on the color difference

on the research samples while using the Nix quality control device and the Toolkit cellphone

application. Using the desired color space range, examine the color variation between both the

scanned samples and pinpoint the sample's lightness and hue differences from the reference.

The scan will be noted and recorded so it can be later referred to if the sample color doesn't

reach your predetermined threshold. Three parameters—the RGB (red, green, and blue) and

CIELAB results—are displayed on the mobile application. 

3.2.3.2 Nix Quality Control Sensor and Data collection

The Nix QC sensor arrives in a "sleep" state. Connect it to the power supply to make it active.

Afterwards, when the Nix QC is charging, a tiny blue light comes on to show that electricity

is being provided. Besides, keep the device plugged in to get a full charge. Place your Nix QC

flat  on  any  stable,  blurred  surface  after  that  and  begin  scanning.  For  the  best  accurate

readings, keep the device firmly against the material to completely block out ambient light.

Be sure the device is charged and awake before intending to access the Nix Toolkit app. Make

sure Bluetooth is turned on in your mobile system preferences and activate the Nix QC app. 

Place the Nix color quality control sensor next to a smartphone. On your screen, click the

dormant Bluetooth icon in the upper left corner (indicating that a device is not connected). If

prompted, pick the equipment from the list with the strongest signal. The average time for a

connection is 15 to 20 seconds, but it can take up to 60 seconds. When paired, a Bluetooth

icon that is active should be visible. After that, collect RGB and CIELAB values from the

smart  phone application by scanning the water from 16 samples with the Nix QC device

(Figure 13.).
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3.2.4 Color Analyser Smartphone Application

An application called Color Analysis meter which measure the remote sensing reflectance of

natural bodies in an image detected by a mobile camera and other digital  cameras.  Color

analyser application leverages the smartphone's digital camera to detect the RGB color value

of  an  object.  The  application  program instructs  users  to  take  images  using  their  mobile

device's camera in order to calculate the RGB value of the image. 
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Surface water reflectance in the red, green, and blue color values of the image is calculated by

uploading the photos to the mobile application (Figure 14.). Each of the three parameters (red,

green, and blue) specifies the color's intensity as a number between 0 and 255. For example,

RGB (255, 0, 255) is rendered as red and blue because the red and blue parameters are set to

their highest value (255), and the others are set to 0 (green). 

3.3.5 Statistical Data Analysis

Data analysis is of central importance in the education of scientists. The Excel features of

most relevance to the analysis of experimental data in the physical sciences are dealt with in

some detail.  The data that  I  collected was stored in  a Microsoft Excel  spreadsheet.  After

gathering all  the data from the eXact iDip photometer,  Nix color quality,  and colormeter

phone application, it was also analyzed in LibreOffice Excel.

In order to analyze the data, LibreOffice Excel was used. For all the information gathered

from the photometer, the NIX QC sensor, and the Colormeter mobile application of the water

reservoir during the season, the minimum, maximum, average, and standard deviation were

calculated. The standard deviation to mean ratio (SDV/M) was used in Eq. (1) to calculate the

coefficient of variation (CV%). The CV details the variations in nitrate and phosphate levels.

𝐶𝑉 𝑆𝐷𝑉𝑀𝑒𝑎𝑛 ∗=( Ú )  100 (1)

Variation was categorized as little variation (CV% 20), moderate variation (CV% = 20–50),

and  high  variation  (CV% >50).  A correlation  and  linear  regression  coefficient  were  also

computed to determine the extent of association between nitrate and phosphate (Verla et al.,

2020).

Any statistical  association between two variables  is  referred  to  statistically  as  correlation

(dependency). In statistics, "correlation" typically refers to the strength with which a pair of

variables  are  linearly  associated,  even if  in  its  broadest  sense  it  can  denote  any  kind  of

association. The relationship between nitrate and phosphate concentrations was computed in

this study. Additionally, the levels of nitrate and phosphate were correlated using a scattering

graph with the red, green, and blue channels that were gathered from the Nix quality control

sensor and from the smartphone color analysis application.
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The cornerstone of statistical modelling is linear regression. In this thesis, the link between

the RGB color results (dependent) and variable concentration (independent) is modeled using

a linear technique. The associations between the nitrate and phosphate variables of different

concentrations and the red,  green,  and blue color  data are modeled using linear predictor

functional equations, whose unobserved model parameters are derived from the data.  When

the R2 value is zero, it indicates no linear relationship; when it is 0.30, it is indicative of a

weak positive linear relationship; when it is 0.50, it is indicative of a moderate positive linear

relationship;  when  it  is  0.70,  it  is  indicative  of  a  strong  positive  

linear relationship; and when it is positive one, it denotes a perfect relationship. 
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4. RESULT AND EVALUATION   

4.1 Photometric Results Analysis

Descriptive statistics for water quality variables calculated from all water sample data are

shown  in  Table  1.,  including  maximum  (MAX),  minimum  (MIN),  average  (AVG),  and

standard deviation (STD). The mean and standard deviation for nitrate and phosphate in the

winter season are presented below. Nitrate levels recorded for the water bodies did not exceed

the limit  in the season, while  phosphate levels recorded for  the surface water  quality  did

exceed the limit in the winter season. 

Table 1. Descriptive statistics of water quality variables for 31 water samples collected from 
study area. 

Statistics Concentrations

Nitrate (mg/l) Phosphate (mg/l)

Minimum 2.93 0.14
Maximum 16.77 9.91
Average 7.79 4

Standard Deviation 4.36 3.09
% CV 55.95 77.25

Correlation 0.05

With regard to the average values of 31 samples for nitrate and phosphate concentrations that

were  determined  with  an  analytical  instrument  photometer,  the  water  quality  parameter

threshold limit was responsible for algal blooms in the water reservoir during the growing

season.  The gap was small and indicated that the reservoir was not seriously polluted. The

results revealed that nitrate and phosphate ranged from 2.93 mg/l to 16.77 mg/l and 0.14 mg/l

to 9.91 mg/l, respectively (Table 1.). It can be seen that the maximum values are not very high

compared to the average in both nitrate and phosphate (Figure 15.). This is due to the fact that

the  water  samples  were  collected  frequently  from one  reservoir.  On  the  other  hand,  the

minimum values are fairly small, most of which were retrieved from samples distributed in

the central part of the study area. The reservoir showed high variations for both nitrate and

phosphate in season (Table 1.). These samples were very valuable for modelling, as they were

useful in extending the confidence interval of the color models and ensuring the significance

of statistical regression algorithms. 
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The correlation between nitrate and phosphate concentrations was computed in this study.

Additionally, in Figure 16., the power relation between nitrate and phosphate was very weak

(0.05). These two variables The relationship between the nitrate and phosphate concentrations

recorded in the reservoir in the winter season was analysed using linear regression analysis, as

presented  in  Figure  16.  A positive  relationship  generally  indicates  similar  contamination

sources. In this study area, nitrate and phosphate concentrations showed a no relevant linear

relationship (R2 = 0.003). 
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Figure 15. Nitrate and Phosphate Concentration Graph.
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4.2 Nix Quality Control Result Analysis

In the research area, the red, green, and blue (RGB) sectors of the image of a colored sample

solution detected by NIX QC from the water sample during the winter season for red, green,

and blue (RGB) colors had an average value of 171, 175 and 163, respectively (Table 2.). The

highest color value recorded was for green (191), and the lowest result obtained was for blue

(147).  The highest standard deviation attained from blue and the lowest from red were 6.32

and 2.99, respectively. The pond showed a very small coefficient of variance between the red,

green, and blue color results, which ranges between 147 and 191. (Table 2.). 

Table 2. Statistical analysis for RGB color values obtained from NIX QC sensor.

Statistics
NIX QC colour values

R G B

Minimum 159 167 147
Maximum 181 192 182

Mean 171 175 163
Standard Deviation 5.1 7.07 10.32

% CV 2.99 4.03 6.32
Correlation (PO4) -0.38 0.92 -0.26
Correlation (NO3) -0.24 0.13 0.89

From the study area 31 water samples were detected by nix color quality control sensor. The

RGB color result distribution ranges between 150- 200. As shown in figure 17., the green

color value was dominant over red and blue.  There is a small gap among the color values

which shows a lower variance and the brightness of the water color was 71%, that indicates

the water was some how clear.  The green was dominant over red and blue colors. Thus, the

highest peak was recorded from green and the lowest recorded from blue.
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The values of nitrate and phosphate concentrations that were determined by the eXact iDip

photometer  were  generally  associated  with  the  color  values  of  green and  blue  in  waters

respectively. A statistical analysis was performed among the nitrate and phosphate parameters

and color results. Both nitrate and phosphate were highly correlated with green (0.91) and

blue (0.89) color values and negatively correlated with red (-0.38) color values that  were

detected with the nix quality control sensor. The photometer results varied from 2.93 mg/l to

16.77 mg/l and 0.14 mg/l to 9.91 mg/l for nitrate and phosphate, respectively, which indicates

a  significant  power  relation  between  blue  and  green  with  nitrate  and  phosphate

concentrations, respectively (Table 2.). 

A linear regression analysis was also computed to determine the extent of the association

between nitrate and phosphate. A linear regression correlation coefficient between phosphate

and nitrate  concentration with RGB color results  is  displayed below in Figure 18. Nitrate

concentrations show a strong positive linear relationship with blue (NO3/B), and its regression

coefficient was R2 = 0.80, but a weak positive linear relationship was obtained from red and

green with R2 = 0.06 and R2 = 0.02 respectively. However,  phosphate concentration with

green (PO4/G) shows a strong positive linear relationship with R2 = 0.86, while the red and

blue color results showed a weak positive linear relationship with R2 = 0.14 and R2 = 0.07,

which confirmed this relationship (Figure 18.). 
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As  discussed  above,  it  is  also  important  to  validate  the  correlation  between  variable

concentration and color results using a model function. A validation model was calculated for

the nitrate  parameter  and relevant blue color  data.  As shown in figure 19.,  the validation

model was computed using the following equation: y = 0.38x-53.78. Therefore, in this linear

regression model, NO3 concentration and blue color results, according to the above equation,

were fitted together with high accuracy. 
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The linear relationship between phosphate and the green channel is shown in Figure 20. A

function was fitted to the data that provided an equation for adjusting the level of phosphate

concentration and the green color. When applying this equation (y = 0.40x-66.77). Compared

to other methods for measuring phosphate, this accuracy is  more than sufficient to collect

meaningful phosphate measurements in inland waters. 
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4.3 Smartphone camera image analysis

Estimating the quality of water using a smartphone camera became accessible to measure the

color of the water. The red, green, and blue (RGB) color result that were acquired from the

image were detected by the smartphone camera. Hence, the red, green, and blue (RGB) color

values  of  the image were  analysed to  estimate  the  water  quality  of  the reservoir  using a

cellphone application.

Statistical analyses were computed for the RGB color value. The minimum and maximum

color values that were obtained from the colormeter cellphone application were 117 and 179

for  blue  and  green,  respectively.  The  highest  standard  deviation was  obtained  from Blue

(16.15),  and  the  lowest  result  was  determined  from Red  (7.97). Moreover,  the  statistical

variation computed from the three RGB color results was very small, less than 20 (Table 3.).

The green part of the color shows a high average result (163), while the red part shows a

lower average result (138).

Table 3. Statistical Analysis Smartphone RGB Color Results.

Statistics Smartphone Color Values
Color values R G B

Minimum 120 151 117
Maximum 158 179 175

Mean 138 163 143
Standard Deviation 7.97 9.03 16.15

% CV 5.76 5.54 11.15
Correlation (PO4) 0.08 0.99 0.03
Correlation (NO3) 0.19 0.08 0.96

The RGB color results obtained from the water reservoir to estimate water quality displayed

in Figure 21. The green was dominant over red and blue colors. Thus, the highest peak was

recorded from green and the lowest recorded from blue.
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The amounts of nitrate and phosphate measured by the eXact iDip photometer were typically

correlated with the colors red, green, and blue (RGB) of the pond waters. Assessments of the

water  variables  and  color  data  were  analysed  statistically.  The  nitrate  parameter  is

substantially connected with blue, while the phosphate variable is connected with green (G),

while both parameters are not significantly correlated with the red (R) color channel (Table

3.).  The  photometer  findings  for  nitrate  and  phosphate  concentration  indicate  a  strong

relationship between blue and green, respectively.  whereas as the red channel were inversely

correlated with nitrate and phosphate concentration 

Figure  22  shows  the  findings  of  a  linear  regression  correlation  coefficient  between  the

concentrations of nitrate and phosphate and RGB values obtained from smartphone camera.

Nitrate concentrations show a strong positive linear relationship with blue (NO3/B), and its

regression coefficient was R2 = 0.92, but  a weak positive linear relationship was obtained

from  red  and  green  with  R2 =  0.04  and  R2 =  0.01  consecutively. However,  phosphate

concentration with green (PO4/G) shows a positive linear relationship with R2 = 0.98 while

the red and blue color results showed a weak linear relationship with R2 = 0.01 and R2 = 0.00

accordingly.
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The appropriate cellphone blue color data and the nitrate parameter were used to create a

validation model. The validation model was calculated using the equation y = 0.26x-29.03, as

illustrated in figure 23. As a result, the NO3  concentration and blue color findings from the

preceding equation were accurately fitted together in this linear regression model. 
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Figure 24., depicts a linear connection between phosphate and the green channel. An equation

for modifying the level of phosphate content and the green hue was produced by fitting a

function to the data. When using the formula y = 0.34x-51.02. This accuracy is well than

enough to gather useful phosphate information of the water quality.
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4.4 Nix QC and Smartphone Results Comparison

Comparing and contrasting Nix QC and Smartphone was about identifying both similarities

and differences  between these two methods using CIELAB color  model.  The CIELAB is

currently used and recommended, because it uniformly covers the full visible spectrum of the

human eye. 

The color CIELAB values obtained from Nix QC was lighter than the brightness of CIELAB

values  obtained  from  smartphone  camera  with  an  average  brightness  of  71%  and  65%

accordingly. There was no significant difference between NIX QC and smartphone brightness.

Color CIELab quality patterns indicate that as heterogeneity increase the water become darker

in color.The colour parameters related to the CIELAB lightness or brightness are summarized

in Figure 25.

A scatter plot is the most useful display technique for comparing two qualitative variables. We

plot on the y-axis the variable we consider the response variable, and on the x-axis we place

the  predictor  variable.  In  the  CIELAB system, the  a*  coordinate  has  negative  values  for

greenish colors and positive values for reddish colors. The b* coordinate has positive values

for yellowish colors and negative values for blueish colors. The similarity and differences for

a*b* of the CIELAB sphere are illustrated in Figure 26. We noticed that the water reservoir

looked more bluish as cellphone cameras were made from the pond sides towards the clearer
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Figure 25. Nix QC and Smartphone CIELAB Lightness Comparison Graph.
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waters in the middle, while the sides looked greenish. The probability of the green color of the

sides  of  the  reservoir  is  due  to  nitrate  and  phosphate  concentrations  entering  from  the

surrounding environment. This was confirmed from the digital analysis of the pictures taken

by CIELAB from the  water  reservoir  (Figure 26.).  The  scatter  plot  showed a  decreasing

response in the red channel (R) with a corresponding increased response in the green channel

(G) and, to a lesser extent, in the blue channel (B) in both Nix color sensor and smartphone

techniques.

  

The camera’s  CIELAB lightness values should correlate with the standard color sensor. For

this data set,  simple correlations have indicated no improvement in the regressions to the

water quality parameters using CIELAB differences. These facts, together with the fact that

we wanted to compare camera results with Nix Quality Control methods using standard forms

for the relationships, determined the use of color ratios rather than differences,  with a lower

proportion of bright blue and higher proportion of green color. Color saturation decreased

with increasing water clarity. A highly significant linear correlation (R2 = 0.71)
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A validation model was constructed to compare and contrast Nix Quality Control results with

smartphone results to estimate the accuracy of smartphones in field image data collection and

also to predict water variables of waterbodies using the lightness (L) portion of the CIELAB

system. As shown in Figure 27., the validation model was computed using the equation y =

0.55x-35.65. This linear regression model successfully fitted for the lightness of both the Nix

color sensor and the smartphone camera (Figure 28.).
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5. CONCLUSION AND RECOMMENDATION

The primary goal of this study was to strengthen the monitoring, evaluation, and governance

of surface water quality and to find out how communities react to smartphone water quality

assessment  applications  in  terms  of  their  efficaciousness,  usefulness,  and  contentment

compared  to  analytical  instruments.  Besides,  this  work  focuses  on  digital  pictures  on

smartphones  for  the  investigation  of  water  quality,  including  the  fundamentals  of  the

technology,  the  tools  used to  capture  images,  the color  spaces used,  and the handling of

research analysis.

Analytical water quality monitoring mainly relies on collecting water samples on site and

sending them to the laboratory to measure various water quality parameters. This Analytical

has the advantage that many different water quality parameters can be measured;  Analytical

techniques in laboratory practice are characterized by high precision, accuracy, sensitivity, and

selectivity.  However,  the disadvantage is  that  water  quality  data can only be collected at

limited time points, and the sampling interval is usually long. This is because such sampling

usually requires professional equipment and trained technicians, and many of the instruments

are expensive, heavy, inconvenient to carry, and labor intensive. 

It is nearly hard to get temporal as well as spatial fluctuations of quality indicators for huge

waterbodies  using  in-situ  data  collectors,  which  can only reflect  point  estimations  of  the

general state of water circumstances in time and space. Water quality variable measurements

and  in-situ  sampling  require  a  lot  of  time,  effort,  and  money.  It  is  nearly  impossible  to

investigate  the  geographical  and  temporal  fluctuations  and  health  of  the  water  in  vast

waterbodies.  The  topography,  for  instance,  may  make  monitoring,  forecasting,  and

management of entire waterbodies impossible. 

Mobility and growing acceptance of smartphones, the widespread usage of digital photos, and

the enhanced development of cellphone APPs, there are currently chances to create on-the-

spot, quick, affordable, and qualitative studies of water quality. Smartphone and hand held

digital camera usage is significantly more prevalent than that of webcams and scanners thanks

to  their  portability  and  light  weight.  Because  of  their  rapid  adoption,  impressive

advancements in camera capabilities, and extensive use of mobile applications, cellphones are
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more frequently  employed  than digital  cameras as  image acquisition equipment  for  color

measurement.

Image analysis has become a popular research issue in contemporary life. Smartphone image

processing  has  advanced  significantly  thanks  to  its  widespread  use,  powerful  computing

power,  accessibility  to  everyone,  and  clear  trend  for  varied  measures,  interpretation,  and

online sharing of data among manufacturers, customers, and governments. The photographic

elements of the smartphone's cameras are of higher quality as the device gets newer. 

This  study  established  that  there  exists  a  statistically  significant  correlation  between  the

phosphate  water  quality  variable  and  green  remote  sensing.  Besides,  there  was  a  strong

correlation  between  nitrate  and  blue.  With  an  appropriate  method  of  linear  regression

algorithms, the retrieval of the NO3  and PO4 content was validated. These accuracy levels

were acceptable for  the practical  application of  routine monitoring and early  warning for

water quality safety with the support of precise traditional monitoring. 

With advances in space science and the increasing use of computer applications and increased

computing powers over recent decades, remote sensing techniques have become useful tools

to achieve this goal. Remote sensing techniques make it possible to monitor and identify large

scale regions and waterbodies that suffer from qualitative problems in a more effective and

efficient manner. The collection of remotely sensed data occurs in digital form and therefore

is easily readable in computer processing. 

More  research  is  needed  to  study  the  digital  camera’s  response  under  different  light

circumstances  and  its  possibility  to  provide  absolute  colour  information.  Until  then  a

calibration  with  ground truth  samples  are  necessary.  When  a  calibration  is  not  available,

digital pictures can still be used to measure relative differences in colour from one region to

another.  In the future, Color Analysis smartphone application should be linked to an online

database where users can upload their measurements, thus crowdsourcing water quality data.
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The goal of the current study is to investigate the feasibility of estimating water composition

from the optical characteristics of the water surface using a conventional digital camera as a

low-cost  alternative  method and to  find  out  how communities  react  to  smartphone water

quality  assessment  applications  in  terms  of  their  efficacy,  usefulness,  and  contentment

compared to conventional instruments. The advanced computing power and feasibility of use

in various applications make smartphones a potential tool for surfacewater quality monitoring.

In  winter  2022/2023,  field  measurements  were  carried  out  on  number  Four fish  Pond,

Gödöllő-Állami telepek, Hungary. The absolute or relative reflectance between channels can

be  used to  estimate  both nitrate  and  phosphate  substances  detected  with the  Nix  Quality

Control (NIX QC) color sensor and smartphone camera method. In addition, a series of three-

band pictures had been taken using a smartphone digital camera, and according to the results

of the color analyser mobile application, the red, green, and blue bands of the water-leaving

reflectance were calculated from these pictures. On this basis, the water nitrate and phosphate

parameters  were  successfully  estimated  by  comparing  the  calculated  values  of  the  color

results obtained from the NIX QC and Smartphone with the analytical results obtained from

the eXact iDip photometer. This study established that there exists a statistically significant

correlation between the  phosphate  water  quality  variable  and  the  green  channel  (PO4/G).

Besides, there was a strong power relation between nitrate and blue channel (NO3/B). With an

appropriate method of linear regression algorithms, the retrieval of the NO3  and PO4 content

was validated. With the help of accurate traditional monitoring, this degree of accuracy was

suitable for the practical implementation of regular assessment and early alarming for the

security of the surface water. 
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9. APPENDIX

Image Capturing Basic Guidelines

The three pillars of photography, such as; aperture, shutter speed and ISO certainly are the
most important steps in photography. 

Step 1.  Aperture

Aperture  can be defined as the opening in a  lens through which light  passes to  enter the
camera. It is an easy concept to understand if you just think about how your eyes work. As
you move between bright  and dark environments,  the iris  in  your eyes  either expands or
shrinks, controlling the size of your pupil.

In photography, the “pupil” of your lens is called aperture. You can shrink or enlarge the size 
of the aperture to allow more or less light to reach your camera sensor. 

Step 2. Shutter Speed

Once the light has passed through the aperture of the lens, it reaches the shutter.  You need to
decide how much of that light you’re going to allow into the camera. A very small fraction of
a second (for example 1/250) will prevent motion. An even smaller fraction (for example
1/4000) for sports photography A really slow shutter speed (30 seconds) is perfect for night
photography. It all depends on what you’re shooting and how much light you have available
to you. 

Step 3. ISO

Once the  light  has  passed through the aperture and  been filtered by the shutter  speed,  it
reaches the sensor,  where we decide upon the ISO. As you turn the ISO number up, you
increase the exposure but, at the same time, the image quality decreases; there will be more
digital noise or “grain”. So you have to decide upon your priorities in terms of exposure vs
grain. 

Color Conversion 

Nix color quality control sensor color conversion from one model to another

Aailable in free color converter-RGB, CMYK, LAB, XYZ, HEX and more (nixsensor.com)
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Color picker; Calculator and generator with high precision and contrast test. Converts also
RGB, HEX, HSV/HSB CMYK, CIELAB and others (https:// colorizer.org)

66



67



10. DECLARATION
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