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1. Introduction 

 
Soil is an essential part of the Earth's critical zone. Since it offers a range of ecological services 

and is an essential component for numerous human endeavors, it is a crucial natural resource for 

supporting life on Earth and economic growth [2]. More specifically, soil acts as a water filter, 

distributes nutrients to plants, and serves as a source of food, fiber, and energy for humans. It also 

contributes to human well-being and living conditions while storing carbon and influencing 

greenhouse gas emissions. Moreover, soil significantly impacts our climate. Therefore, preserving 

and sustainably managing soil are vital actions required to address pressing global concerns like 

ensuring food availability, mitigating climate change effects, combating environmental 

degradation, overcoming water scarcity issues, and safeguarding biodiversity [3]. 

Soil is likewise seen as a heterogeneous system, with complicated processes and systems that are 

difficult to completely explain. Furthermore, such functions of soil are being jeopardized by 

massive pressures from urbanization and deterioration, as well as agroecological balances and food 

security [4]. 

Soil assessment necessitates complicated analytical procedures with many features at numerous 

sites. unfortunately, soil surveyors occasionally lack consistency in their analytical and 

methodology practices [3], hampering the cross-disciplinary exchange of quantitative data and the 

execution of policies aimed at minimizing the major soil hazards. As a result, the increased need 

for high-resolution soil data covering huge regions is challenging to provide [5]. 

Traditional laboratory methods for analyzing soil parameters are often unworkable since they are 

time-consuming, costly, and occasionally inaccurate [6]. Often, these approaches frequently 

necessitate extensive sample preparation, the use of potentially dangerous chemicals, and complex 

apparatus that is unsuitable when several measurements are required, such as for soil mapping, 

monitoring, and modeling. Historically, this kind of laboratory examination has helped us 

understand the soil system and evaluate its quality and activity. We need to improve our analytical 

skills in order to better comprehend the soil as an overall system as well as a resource that we can 

utilize with greater efficiency while also preserving it for future generations. This is more crucial 

than ever before since acquiring bigger volumes of precise soil data is needed in order to manage 

our main resources sustainably and meet the needs of the next generations for nutrition and fiber 
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[7]. Furthermore, there are still doubts and disagreements about present procedures and their 

outcomes, which can lead to misinterpretations and misleading information. These difficulties 

necessitated study into other ways for optimizing or assisting these previously significant wet 

approaches [8]. 

Spectroscopic techniques such as visible (VIS), near-infrared (NIR), and mid-infrared (MIR) 

spectroscopy are being examined as potential solutions to supplement or substitute conventional 

laboratory methods of examining soil. Most of these approaches are non-destructive, allowing the 

essential integrity of the soil system to be preserved, and they may efficiently describe soil [9]. 

Spectroscopic measurements are quick, accurate, and affordable. The spectra contain data 

pertaining to the soil's fundamental makeup, which includes minerals, organic molecules, and 

water. In reaction to its surroundings and human intervention, soil acquired properties throughout 

its formation from its parent material, including minerals and tightly bound water [4]. All of these 

encodings become apparent in the spectra as an intake at certain frequencies of electromagnetic 

light, and their assessments may be used to subjectively and quantitatively characterize soil. 

Spectroscopy can also offer data regarding the dimension of soil particles, and consequently the 

soil matrix. Another appealing aspect of spectroscopy is that spectra may be obtained at different 

locations or by scanning various platforms, such as proximate sensing in the field, in the laboratory 

utilizing collected material, or from platforms for imaging with multi and hyperspectral 

features[10]. 

As we progress through the pages of this thesis, we will embark on an adventure to discover various 

aspects of soil spectroscopy. In the next chapters, we will look at the fundamental ideas and 

procedures that underpin this technology. We will investigate the methodology, data analysis, and 

practical applications made available by soil spectroscopy. These studies seek to address critical 

concerns about the ability to identify characteristics of soil, predict soil quality, and have an 

influence on a wide range of disciplines, from precision agriculture to environmental sustainability 

and mineral resource management. We will examine the landscape of soil spectroscopy, looking 

at its potential, limitations, and future prospects. 
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2. Literature review 

2.1 Visible and infrared spectroscopy 

Spectroscopy, the art of deciphering the secrets contained within light, is a fundamental instrument 

for unraveling the mysteries of matter. We will look at the detailed procedures of visible and 

infrared spectroscopy in this chapter. These techniques operate similarly to expert detectives, 

retrieving crucial information from substances' particular spectral fingerprints. We equip ourselves 

with these exact instruments as we begin our study through the nuances of visible and IR 

spectroscopy in our narrowed examination. We unravel Earth's well-guarded secrets with these 

powerful approaches, providing significant insights with wide-ranging implications in agriculture, 

ecology, and geology [11]. 

2.1.1 The visible 

Only a small fraction of the electromagnetic range is covered by visible light. It has a wavelength 

between 0.4 to 0.7 μm. When visible light interacts with soil, it causes energy shifts in the atoms, 

typically via electron interactions such as the crystal field effect and charge transfer. There is also 

a scattering effect that takes place over the visible range. The broad spectrum of absorption 

produced by these electron processes in soils determines the color of the soil at visible wavelengths 

while scattering effects alter the spectrum's albedo sequence's baseline. Even though the spectral 

response in the Vis area appears imprecise, it is possible to infer quantitative and qualitative 

information from this data that is not visible to the human eye. [12]. 

2.1.2 The infrared 

Infrared radiation has a wavelength range of 0.7 μm to 1 mm. When it comes to molecules, their 

vibration energy transitions normally need a frequency in the infrared region. As a result, 

molecular interatomic vibrations can potentially be accomplished by using infrared radiation 

which serves as the foundation of the infrared spectroscopy method. An IR spectrum, in essence, 

offers a chemical characterization of the given sample [13]. Both electric and magnetic 

components are contained in electromagnetic radiation, however, the electrical vector of infrared 

rays interacts with bonds between atoms inside molecules to initiate distinct vibrations, which 

leads to the absorption of infrared light. When infrared radiation is absorbed, a variety of molecular 

vibrations take place, such as bending, stretching, and even wagging motions among the atoms 

that make up the molecule [14]. To exhibit IR activity, a compound must have covalent bonds and 
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be subjected to an electric field that oscillates while atomic bonds vibrate. IR radiation is absorbed 

owing to molecular vibrations in particular types of chemical bonds such as O-H, C-H, and C-N. 

In contrast, symmetric bonds with equal electron sharing do not produce IR-active vibrations. The 

spectrum of infrared radiation, shown in Figure 1 [15], represents the IR three primary regions: 

near-infrared (NIR) spanning 0.70-2.5 μm, mid-infrared (MIR) spanning 2.5-25 μm, and far- 

infrared (FIR) spanning 25-1000 μm [16]. The implications and combined modes of basic atom 

vibrations that are active in the MIR and FIR areas are mostly seen in the NIR region. NIR 

spectroscopy is employed extensively in a variety of sectors, including food science, 

semiconductor electronics, pharmaceutics, chemical identification, and soil quality study. The 

fundamental vibration of the functional groups that make up a material can be used to explain its 

absorption in MIR spectra. [17]. The MIR predominantly reflects atom vibrational modes such as 

wagging, stretching, and twisting. Furthermore, the MIR spectral region, like the NIR spectral 

region, has lately acquired prominence in soil applications. 

 

 

 

Figure 1: The electromagnetic spectrum 
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2.2 Soil visible and infrared spectroscopy 

 
Understanding soil spectroscopic techniques is important for discovering the numerous mysteries 

lying under the Earth's surface. Soil spectroscopy is a useful instrument for deciphering the 

complexity of soil composition, structure, and condition. This chapter takes you on a scientific and 

technological heading into the foundations of soil spectroscopy, delving into the methods and 

concepts that allow us to discover the hidden characteristics of soil [18]. We are able to discover 

more about it by examining its spectral attributes. We provide the basis in this framework for 

addressing the different uses of soil spectroscopy and its relevance across various sectors, 

developing our understanding of Mother Earth beneath our feet. Figure 2 [19] depicts a flowchart 

of the technique's key steps, from preparation of the soil sample to prediction. 

 

 

Figure 2: Procedure for developing vis-NIR prediction models. 

2.2.1 Instruments 

It might be difficult to select a suitable vis-NIR spectrophotometer. Various manufacturers provide 

a variety of alternatives with varying benefits. The selection procedure is dependent on the 

particular application, with a cost-performance trade-off. In scientific contexts, high-resolution 

equipment with a resolution of 10 nm or greater is desirable. It should be emphasized, however, 

that resolution and noise are inversely related. It is advised for scientific purposes to have a spectral 
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range that includes both the visible and the full NIR region in order to capture critical wavelength 

bands. However, for certain specialized applications, the entire vis-NIR spectrum may not be 

required. 

Flexibility is critical in the choosing of instruments. Several criteria, such as the desired usage 

environment, must be addressed. Instruments used in laboratories have different needs than those 

used for outside measurements. Outdoor applications require toughness and ease of handling, 

whereas laboratory devices may prioritize other attributes. Furthermore, the nature of the samples 

being analyzed affects instrument selection, especially when working with multiple sample 

varieties. For outdoor or online measurements, the flexibility to show samples in a variety of ways 

becomes critical. Because of its adaptability in these situations, fiber optics are frequently selected 

for spectral collecting. It is recommended to utilize post-dispersive equipment to assist in reducing 

the influence of ambient stray light [20]. 

2.2.2 Methods 

 

Soil sample preparations 

Soil spectroscopy requires a two-step sample preparation procedure similar to that used for 

chemical and physical studies. These methods offer practical benefits and allow for accurate 

calibrations even with moist soil samples. Some cases have demonstrated the benefits of 

calibrating field-moist samples, particularly when consistent remoistening processes are used. 

However, due to improved standardization and less interference from water bands, dry soil 

calibrations performed in a laboratory environment outperform those performed on field-moist 

soil. 

Soil spectroscopy relies significantly on crushing and screening soil samples. These methods 

remove stones and plant residues while allowing for representative subsampling [21]. Furthermore, 

further grinding and screening might result in a more uniform particle size, which affects spectrum 

outputs. It is worth mentioning that grinding can significantly improve reflectance, especially for 

clay samples. Yet, this impact can be minimized by doing pre-treatment activities prior to spectral 

analysis. 
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Measurements 

It is common for each instrument to have a sample display arrangement and appropriate sample 

containers of its own. To put it simply, the general advice is to adhere to the instructions specific 

to the instrument. But below are some general things to keep in mind. [22]: 

Sample Presentation and Handling 

 

- Take measurements on a representative section of the soil sample because soils are highly 

heterogeneous. 

- A setup that allows for scanning of a significant portion of the sample is preferable. 

 

- Use repeat spectral sampling for small sampled regions. 

 

- Never shake the sample since it might cause the particles to stratify. 

 

- Instead, evenly flatten the sample surface with a tool. 

 

-Maintain uniformity in terms of volume and pressure while packaging soil samples in containers. 

 

- Do not utilize water or alcohol/organic solvents to clean the container between samples. 

 

-Using a dry, dust-free tissue, clean the measurement window that comes into touch with the soil. 

 

White and Dark Reference 

 

- White and dark references can be taken automatically or manually, depending on the instrument. 

 

- It is critical to take white and dark references to ensure high-quality spectra. 

 

- In numerous instruments, white and dark references should be taken every ten minutes. 

 

-When a white reference is taken, certain instruments automatically take a dark reference. 

 

- If utilizing an external white (or dark) reference, make sure it matches the sample measurement 

settings. 

- The white reference should have 100% reflection at all wavelengths between 400 and 25,000 nm. 
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Minimizing External Light Sources 

 

- During measurements, reduce or regulate any other sources of light to avoid affecting results. 

 

-Controlling sources such as fluorescent light and ambient light from windows that may interfere 

with readings is a significant task for these measurements. 

Pre-treatment of the spectra 

Several essential steps in the field of soil analysis utilizing visible-near infrared (vis-NIR) 

spectroscopy can considerably improve the dependability of the gathered results. To begin, 

compute the average spectra of many scans on the same soil sample. This method not only 

eliminates the impact of false duplicates in later studies but also increases the signal-to-noise ratio, 

making measurements more robust and precise. 

Following the averaging of spectra, the observed reflectance data should be transformed, 

specifically by calculating the logarithm of the reciprocal of reflectance. This transformation 

contributes to the development of a more linear connection between the measured absorbance and 

the concentration of the chemical elements of interest. This improves the alignment of the spectral 

data with the required analytical aims. 

Additional spectral pre-processing techniques are frequently advocated in the search for more 

chemically relevant peaks and the minimization of disruptive variables such as baseline shifts and 

overall curvature. This is especially important given the variety of soil data sets and the 

individuality of each analysis endeavor. Several such approaches are widely available in specialist 

spectroscopic software, but no one-size-fits-all solution exists. As a result, it is recommended to 

conduct a systematic review by evaluating several transformations on a representative calibration 

set and adjusting the selection to the project's unique requirements. This method ensures that the 

soil analysis is both trustworthy and precisely linked with the chemical goals at hand [23]. 

2.2.3 Calibration and validation 

There are several ways available for calibrating soil vis-NIR spectra in order to predict soil 

characteristics. Multiple linear regression (MLR), principal component regression (PCR), and 

partial least squares regression (PLS) are examples. They all have pros and limitations, and we 

will not provide particular suggestions on which to use, although the linear ones are the easiest and 



9  

most often utilized. Simultaneously, the usage of data mining is growing, particularly for big 

diversified data sets, where it is believed to serve somewhat better than linear analysis [23]. 

Instead, we will provide some fundamental guidance on factors to take into account when choosing 

calibration samples and verifying the model. 

Calibration Set 

Creating an effective calibration set for soil spectroscopy is pivotal. The set must encompass the 

relevant variations found in the data's intended use. If the model is meant for a countrywide 

application, it should cover all existing soil types. Conversely, for a local-scale model, capturing 

the local variation is essential, and including irrelevant soil types should be avoided. 

The number of calibration samples required is determined by the scope of the variance. In general, 

more samples result in a more robust model. For extensive geographical coverage and various soil 

types, 100 to 200 calibration samples are recommended, but farm or field-scale predictions can be 

made with as few as 25. The needed sample count varies with the desired variable; directly 

measured qualities such as clay may necessitate fewer samples, whereas indirectly measured 

features such as vis-NIR absorbing traits may necessitate more samples [24]. 

Creating a soil spectral library necessitates a thorough soil sampling technique, regardless of scale. 

It is critical to capture the necessary variety. When working with a significant volume of vis-NIR 

scanned samples, selecting calibration samples based on their spectra aids in capturing a wide 

range of dataset variance. The calibration set should ideally have an equal distribution, which may 

be accomplished through techniques like the Kennard and Stones uniform mapping. 

Validation 

To assess calibration accuracy effectively, an independent validation set is vital. It is supposed to 

be sampled and analyzed separately, ideally not sharing the same sampling time or strategy as the 

calibration set. If you lack a separate validation set, consider these guidelines: 

- For field and farm-scale analyses, include all samples within a soil profile in either the 

calibration or validation set to avoid dependence. 

- For regional or global-scale analyses, avoid using geographically clustered samples that 

may introduce dependence. If clusters are used, ensure every sample from a given cluster 
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exhibits the same pattern in either the calibration or validation set to prevent overly 

optimistic predictions. 

Within the calibration process, an internal validation step is employed to refine the model's 

performance. This internal validation serves various purposes, such as determining the optimal 

number of components and selecting the most informative wavelengths. It can also aid in 

optimizing and refining the calibration model. Popular techniques for internal validation include 

cross-validation and bootstrapping, which systematically test the model's performance on a subset 

of data while using the remaining data for calibration. When it comes to the ratio of calibration to 

validation samples, there is no universally fixed rule [25]. Nevertheless, a common practice 

involves a ratio of 2/3 calibration samples to 1/3 validation samples, which provides a useful 

benchmark. 

Model Assessment 

Numerous statistical measures describe the accuracy of the estimations. To account for prediction 

accuracy and imprecision, we propose using the root mean squared error (RMSE), bias, and 

standard deviation of the error distribution (SDE), as well as the ratio of performance to deviation 

(RPD) for evaluations across units [19]. 

 

 

 

∑𝑁 (𝑦̂ 𝑖 − 𝑦̂𝑖)2 
𝑅𝑀𝑆𝐸 = √

  𝑖=1 
 

𝑁 

 
 

∑𝑁 (𝑦̂ 𝑖 − 𝑦̂𝑖) 
𝐵𝑖𝑎𝑠 = √  𝑖=1 

 

𝑁 

 

∑𝑁 (𝑦̂ 𝑖 − 𝑦̂𝑖 − 𝐵𝑖𝑎𝑠)2 

𝑆𝐷𝐸 = √  𝑖=1  

𝑁 − 1 
 

𝑅𝑃𝐷 = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

 
 

𝑅𝑀𝑆𝐸 

For sample i, y is the measured value with N samples and 𝑦̂ 𝑖  is the forecasted value. 
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Software 

 

A profusion of specific commercial software programs is easily accessible in the field of spectral 

data analysis and calibration, intentionally developed to simplify the process and give user-friendly 

functionality for these jobs. Furthermore, many instrument makers provide specialized software 

with their hardware, providing easy integration and frequently allowing real-time forecasts. These 

analytical and calibration techniques are also accessible via a variety of software options, including 

commercial programs, shareware, and open-source platforms like the R-project [23]. 
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3. Materials and methods 

 
3.1 Methods of spectral-based soil parameter prediction 

This part of the study endeavored to find out whether the conducted VIS–NIR spectrum analysis 

information could potentially be used to predict soil characteristics. The importance of being able 

to investigate the predictability of cation exchange capacity (CEC), pH, humus content, and clay 

content for 400 soil samples collected from the soil archives of the laboratory of the Department 

of Soil Science (MATE). Conducting reference laboratory analysis is an essential requirement for 

the multivariate calibration in addition to the spectral measurements. Mathematical-statistical 

chemometric models can be developed based on laboratory reference clay content, humus content, 

pH, and CEC evaluations on assigned calibration samples covering the whole dataset's spectral 

variability, as well as on their reflectance spectrum. According to the spectral reflectance of 

samples whose composition is unknown, the proposed models may be used to forecast these soil 

attributes. The primary goal of using chemometric approaches for soil research is to partially or 

completely replace traditional laboratory procedures with an easy-to-use and quick method. This 

will make it possible to determine the attributes of a given number of samples more quickly and 

affordably, or to analyze more samples in a given amount of time and within a certain amount of 

money. 

3.1.1 Exploration of Terrain and Soil Sampling 

The soil samples were collected by the department staff as a part of a broader project 

(Agrotechnology National Laboratory project) at The Hungarian University of Agriculture and 

Life Sciences' Soil Science Department. To guarantee representative sampling, rigorous 

procedures, and guidelines were followed while collecting soil samples. Samples were gathered, 

allowed to air dry, and then sieved using a 2 mm sieve in preparation for additional examination. 

The objectives of this procedure were to preserve sample integrity and provide details about the 

characteristics of the soil in the research region. 
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3.1.2 Spectral and Laboratory Reference Analysis 

The Analytical Spectral Devices (ASD) LabSpec 4 Hi-res portable spectroradiometer from the 

Department of Soil Science was utilized for the spectroscopic measurements in the lab. The spectra 

have been obtained by the device in the 350–2500 nm spectral range. 379 soil samples were 

collected, and the Muglight probe attachment was employed to gauge the spectral reflectance of 

each sample. This probe allowed for direct contact with the samples, minimizing 

environmental factors that might have a detrimental impact on the measurement quality. 

Additional samples were selected in accordance with the chemometric analysis findings and the 

visual interpretation of the spectra. 

3.2 Data Acquisition and Pre-processing 

 

3.2.1 Spectral Acquisition 

R Studio was used to import the unprocessed spectral data and visualize it. Any required data 

wrangling was done when the data structure and variable identification (reflectance and 

wavelength) were verified. This could comprise managing missing values, changing data formats, 

or choosing relevant columns. Lastly, the wavelength values were shown using the x-axis, and the 

reflectance values on the y-axis. The raw spectra are subsequently shown in the plot created in R 

Studio, as seen in Figure 3 below. 

 

 

 

Figure 3: Raw spectra 
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3.2.2 Pre-processing Methods 

 

Reflectance spectra into absorbance spectra transformation 

Initially, as a main step of spectroscopic transformations, we need to transform the spectral 

reflectance data to spectral absorbance by simply using the formula below. It is an important step 

for enhancing spectral features and for further preprocessing procedures. 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = 𝑙𝑜𝑔 (
 1 

) 
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 

 

 
Signal processing 

In this section, signal processing attempts to reduce unwanted spectrum variance to enhance the 

quality of the spectra before modeling. It enhances both the quantitative and qualitative spectral 

model outcomes in a comparable manner. Particular precautions must be used while selecting 

methods to prevent the loss of valuable physical information. The intended outcome and the NIR 

data are always taken into consideration while choosing the method to be used. 

Noise removal 

In this section, a digital filter called a Savitzky-Golay (SG) filter was employed to smooth the data 

and eliminate noise. The method involves fitting a low-degree polynomial to a window of 

neighboring data points, and then substituting the fitted value for the center data point. The 

envisioned cutoff frequency of the filter and the polynomial's order define the window size, which 

equals 17 in this case. Other methods can be opted for noise removal like splice correction and 

moving average techniques. However, the selection of Savitzky-Golay for the given data was 

encouraged by the ability to calculate derivatives without making considerable distortion. 

Differentiation (First-Derivative) 

We can pair smoothing with differentiation, as discussed in the preceding section simply because 

differentiation increases spectral noise. The Savitzky-Golay function can be employed also to 

apply differentiation, it smooths out the coefficients of the polynomial in the moving window so 

that the noise is not significantly amplified. Moreover, considering a fixed band width, the first 

derivative of a spectrum can likely be calculated using the finite difference technique (difference 
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between successive data points). This approach improved small spectral absorption characteristics, 

while contributing to resolving absorption overlaps, and improved the dataset's prediction 

accuracy. 

Scatter correction 

Multiplicative Scatter Correction 

 
The multiplicative impact of scattered light on the NIR spectra is lessened by the Multiplicative 

Scatter Correction (MSC) approach. More specifically, it's a technique that assumes that each 

spectrum in an identified set of spectra can have its offset and scattering effects eliminated. 

Regressing each spectrum onto the mean spectrum yields this model. Based on the average 

spectrum of the collection of spectra, it can additionally be regarded as an offset and slope 

correction of the spectra, which is considered important for the prediction accuracy. 

Standard Normal Variate 

 
This approach is regarded as another straightforward method for spectra normalization that aims 

to account for light scatter. However, it's implemented in a row-wise manner compared to the 

Multiplicative Scatter Correction technique. Within SNV's advantages are its capacity to eliminate 

physical occurrences from spectra, improve model interpretation and forecast accuracy, and 

enhance spectral linearity correction. 

3.3 Calibration sampling 

In an effort to solve the multicollinearity issue and to make it easier to identify the ideal sample 

configuration that accurately captures the spectral variability, sampling methods are often 

employed in the principal component (PC) space of the spectral variables. Because it performs 

better with fewer variables, as in this study, it is thus required to calculate the Primary 

components (PCs) of the spectra before performing the calibration sampling to decrease error 

prediction, represent underlying variability, and reduce the number of variables. 

3.3.1 Sample Size Selection 

For the purpose of calibration set size, we can use different methods, which are: Kennard-Stone 

sampling (KSS), K-means sampling (KMS), and Conditioned Latin hypercube sampling (cLHS). 
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Each of these approaches has advantages and disadvantages. In this study, it is remarkably 

appropriate to use the KSS method since it provides a reliable means of selecting calibration 

samples that evenly cover the distribution of predicted probabilities, despite its simplicity 

compared to alternative methods. 

Based on these steps, the ideal sample size for calibrating the vis-NIR models was determined: 

 

1. On the principal components' space, the vis-NIR spectra were projected. By applying the 

resemble package in R studio, the singular value decomposition technique was used to determine 

the PCs. 

2. Subsets of varying sizes were sampled from the collection of possible calibration samples. In 

increments of 10, we began from thirty to three hundred samples. The Kennard-Stone sampling 

technique was used to sample each subset from the PCs of the vis-NIR data. 

3. We calculated the mean squared Euclidean distance (msd) between estimates of the probability 

density functions (pdfs) of the samples in the subset and the pdfs of the samples in the entire set 

of samples for each calibration subset. The msd is calculated as follows [18]: 

 

𝑘 
1 𝑚𝑠𝑑 =  ∑ 

 
𝑑2[𝑃 (𝑥 

 
∈ 𝑐𝑠), 𝑃 (𝑥 ) ] 

𝑘 
𝑗=1 

𝑠 𝑗 𝑃 𝑗 

Where 𝑐𝑠: a given subset of samples, 𝑃𝑠(𝑥𝑗∈𝑐𝑠): the estimated pdf of the 𝑗th PC of 𝑐𝑠, 𝑃𝑝(𝑥𝑗): is 

the pdf of the 𝑗th PC for the whole population, 𝑑2: reflects the two single distributions under 

comparison's squared Euclidean distance, and 𝑘: the total amount of kept PCs. 

The estimates for both the 𝑃𝑝 and the 𝑃𝑠 were estimated for the same values inside the PC𝑝 ranges, 

by employing the same bandwidth and Gaussian kernel. The optimal calibration set size was 

indicated by a notable decrease in the msd, which did not alter further when more samples were 

included; that is, the 𝑃𝑠 was comparable to the 𝑃𝑝. This was determined visually by comparing 

the calibration sample size adjusted to the mean msd. To achieve trustworthy predictions of msd 

as a function of sample set size, The first two steps were repeated ten times, and the average of 

those repetitions was used to determine the final msd. 
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3.3.2 Evaluation and visualization of sample size selection 

The visualization and analysis of Kennard-Stone selected samples is valuable as it provides an 

understanding of how the dataset looks like. In this regard, a subset of samples is chosen based 

on their Mahalanobis distance from each other in the principal component space. The selection 

method ensures that the chosen samples represent the variability contained within the dataset. 

Patterns and trends in the data are made more obvious when these selected samples are plotted 

together with the original dataset. It is also helpful because clusters, outliers, and other distinct 

groupings can be identified through this graphical representation. 

3.4 Chemometric analysis 

Chemometric approaches based on multivariate mathematical or statistical methodologies are 

appropriate for determining the statistical connection between dependent and independent 

variables. This study implemented PLSR with leave-one-out (LOO) cross-validation to calibrate 

spectral data with reference soil data from the laboratory. 

3.4.1 The applied methods – Partial Least Squares Regression 

 
In this study, the calibration of spectral data with laboratory soil data was undertaken using Partial 

Least Squares Regression (PLSR) and Leave-one-out cross-validation. It is deployed to model 

predictions in cases where numerous predictor factors exhibit strong correlations with one another. 

This method is similar to principal components regression (PCR). Nevertheless, unlike PCR, the 

PLSR approach picks out the next few orthogonal factors that minimize the covariance between 

predictor (X spectra) and response variables (Y laboratory data). The goal of this model is to 

pinpoint a select few variables that together explain the majority of the variation in responses and 

predictions. 

Leave-one-out cross-validation was utilized to deduce the amount of factors for retention in the 

calibration models. The optimal cross-validated calibration model was determined by calculating 

the root mean squared error of predictions (RMSEP). We usually select the model with the least 

RMSE but we also checked if it is appropriate to have a more parsimonious model than one that 

minimizes RMSE. In order to compare all models with fewer components, the model that produced 

the lowest RMSE was utilized as the point of reference (RMSECV). In order to ensure that the 
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RMSE of the final model is not appreciably higher than the RMSECV, the model with the fewest 

factors was sought after. 
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4. Results and discussion 

After preprocessing and eliminating spectral outliers, 355 soil samples remained. Test-set 

validation was used to confirm the prediction models' stability with approximately 70 % calibration 

(around 255 samples) and 30 % validation samples (around 255 samples). 

4.1 Characteristics of the soil spectral curves 

 
The spectral pre-processing results are shown in the Figures below. Particularly, the Vis-NIR 

reflectance spectra of all 379 soil samples had a comparable overall shape. The visual study of the 

spectra revealed noticeable variances caused by soil characteristics. The finding is consistent with 

previously published studies [5], demonstrating the study findings' congruence with current 

literature. We did not fall into over-fitting, as we employed this rigorous test-set validation method 

which helped us to make our prediction models more generalizable. We could examine the model 

performance properly by splitting it into the calibration-validation process whereby it was possible 

to create several data subsets out of them; thus allowing us to get more reliable findings. 

Additionally, this iterative approach assisted us in making alterations and refining our models so 

that they became easier to comprehend and their forecasting precision improved. We also analyzed 

performance  data  with  validation  steps  taken  and  evaluated  model  predictability. 

 

 

Figure 4: De-noised spectra by Savitzky-Golay 
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Figure 5: First Savitzky-Golay derivative 
 

 

Figure 6: Multiplicative Scatter Correction 

 

Figure 7: Standard Normal Variate 
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4.2 Calibration Sampling Assessment 

4.2.1 Determining the ideal calibration set size 

The first three PCs accounted for 99% of the spectrum fluctuation and were used to determine the 

ideal calibration set size. When comparing estimates of the probability density functions (pdfs) of 

the complete set and the pdfs of the samples in each calibration set, Figure 8 shows the mean 

squared Euclidean distance (msd) values that are related to those comparisons. The msd values 

declined as the sample set size increased. Notwithstanding this, there were only minor changes in 

msds between the calibration sets after 100 samples. As a result, we chose this number of samples 

as the ideal size for calibrating the vis-NIR models of the desired soil characteristics. 

 

 

 

Figure 8: The msd computed for the different calibration dataset sizes. 

4.2.2 Calibration sample selection 
 
The Kennard-Stone approach was also used to choose a representative subset of calibration 

samples from the principal components scores for our chemometric model. It prioritizes samples 

that are evenly distributed throughout the data set and hence has good population coverage. For a 

visual representation of the selection process, we have plotted the first two principal components 

(PCs) in a scatter plot. Each data point represents one soil sample. The blue translucent circles 

show all samples while the larger red circles depict the calibration samples chosen by the 

Kennard-Stone algorithm. From Figures 9 and 10 below, it can be seen that these selected 

calibration samples are well positioned across the PC space, highlighting the variability 
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contained in the original dataset. This results in a more reliable and representative calibration set 

for our chemometric model. Figure 9 shows all soil samples (blue circles) in the first two 

principal components (PCs), while Figure 10 highlights the calibration samples chosen by 

Kennard-Stone (red circles) on the same PC space. 

 

 

Figure 9: All soil samples 

 

 

Figure 10: Calibration samples selected by Kennard-Stone Sampling 
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4.3 Multivariate calibration 

Partial Least Squares Regression (PLSR) is used as a very powerful multivariate calibration 

method in the field of spectroscopy. After preprocessing steps and sample calibration have taken 

place, we will now look at the application of PLSR for creating robust calibration models. In 

modeling complex relationships between spectral data and analyte concentrations, PLSR takes an 

advantage over other regression methods by using latent variables that contain most of the variance 

present while minimizing overfitting. The purpose of this study is to assess how effective PLSR is 

based on various performance indicators such as Root Mean Squared Error of Prediction 

(RMSEP), measured versus predicted plots indicating predictive accuracy, and wavelength plotted 

against loading values explaining spectral components influencing predictions made from the 

model. These analyses are aimed at demonstrating whether or not it is possible to achieve 

calibration objectives through interpretation when using the PLSR approach for solving the given 

spectroscopic measurement problems. 

Additionally, the models were constructed using the training datasets, and their correctness was 

evaluated using the testing datasets. The Root Mean Squared Error of Prediction (RMSEP) and 

the coefficient of determination (R2) are the two performance measurements taken into 

consideration. The optimal combination of spectral processing and investigated regression models 

was selected for each soil attribute and dataset by considering the highest R2 and the lowest 

RMSEP. 

4.3.1 Utilizing the Number of Components versus RMSEP for Enhanced 

Model Performance 

To optimize model performance in component selection, we use RMSEP as a way of evaluating 

the performance of models across different number of components. RMSEP measures the 

difference between actual data and model predictions, with the lowest values representing the best 

fit as mentioned above. By plotting the number of components versus RMSEP, we can identify an 

elbow point where the reduction in RMSEP starts to flatten. This point indicates that there is no 

longer much significance associated with adding more components when it comes to model 

improvements. The optimal choice for the number of components is just before this inflection since 

it strikes a balance between maintaining complexities inherent in data and diminishing overfitting. 
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Therefore, this technique helps determine the trade-off between model complexity and 

generalization. 

Moreover, by using graphs presenting RMSEP at different numbers for clay, humus, pH, and CEC, 

we can directly establish which principal component number has minimum RMSEPs. Besides that, 

we can use the R studio to determine it directly from the graph. Consequently, as seen in Figure 

11 below, the optimal number of components of clay, humus, pH, and CEC are 18, 16, 15, and 12 

respectively. 

 

 

 

 

Figure 11: The number of components versus Root Mean Squared Error of Prediction (RMSEP) 

for clay, humus, pH, and CEC 
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4.3.2 Cross-Validation of Predictive Models for Soil Properties 

The comparative analysis of clay content, humus content, pH, and cation exchange capacity 

(CEC) depicted in Figure 12 below is achieved through the measured versus predicted plots. 

Predicted values on the y-axis that were generated by PLSR models are shown while measured 

values that were obtained after laboratory analyses are plotted on the x-axis. It is expected that 

points should lie close to the diagonal line which indicates accurate predictions. Results from 

these plots indicate that Clay content and pH can be predicted well by the PLSR models as most 

of the points are concentrated around the diagonal line. The calibration step resulted in a higher 

R2 value and lower RMSE than the validation step for each parameter. This implies that after 

calibration the same dataset in which a model is built is used to test it out. However, during the 

validation stage, we can observe leave-one-out cross-validation results which approximates how 

well a model may perform in reality. For the given dataset, humus was predicted best using the 

PLSR model with the obtained calibration sample size (R2 = 0.72694), followed by clay content 

(R2 = 0.65917), pH (R2 = 0.52588), and CEC (R2 = 0.51824). 

 

 

Figure 12: Measured versus predicted values of clay content, humus content, pH, and CEC 
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4.3.3 Unveiling the informative wavelengths using loading plots 

The multivariate data analysis was also conducted to investigate the patterns and internal 

arrangement of the spectral information using loading plots. These helped establish how important 

different wavelengths of electromagnetic radiation were in terms of patterns exhibited by each 

principal component among other aspects. Most frequently, we carry out these analyses to examine 

the loadings of each wavelength variable; thus, determining which wavelengths emitted more 

energy and thus contributed most to variations in the datasets and therefore allowing for the 

selection of proper features. More specifically, a loading plot used in multivariate calibration 

models gives us a view of how original variables are related to the principal components extracted 

from the data set. Each part on these plots represents a variable and its position indicates both the 

magnitude and direction of its contribution to each principal component. Moreover, looking at the 

pattern of variables on these plots can unravel possible groupings or hidden structures within data 

that could be suggestive for further investigation. It is aimed at identifying significant factors 

necessary for model performance as well as refining the calibration model by eliminating less 

useful ones. In our studies, the significant wavelengths will be assigned based on the 3 first PCA 

loading values. 

 

Figure 13: Loading plots of clay, humus, pH, and CEC. 
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The above figure 13 shows the loading plots for clay, humus, pH and CEC which are based on 

PLS regression from the first three principal components Comp 1, Comp2 and Comp3. The 

wavelength (nm) of each variable is denoted on the x-axis while the vertical axis represents loading 

values, where greater absolute values indicate more influence on a particular component. 

Furthermore, component 1 in all of the plots, has the highest percentage of explained variance, 

unveils significant insights. Other revelations about spectral information and measured soil 

properties can be found in components 2 and 3 depending on their explained variance. For 

example, clay has a considerable positive loading between 350 nm and 500 nm, while humus, and 

CEC exhibit strong positive loadings (picks) at approximately 1850 nm suggesting that these 

wavelengths are pivotal in capturing information related to their content. 
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5. Conclusion 

The soil science profession is dealing with an increase in demand for regional, continental, and 

international databases to monitor soil situations. Nevertheless, such information is lacking. Low- 

cost equipment for measuring soil characteristics across large areas is needed. Soil spectroscopy 

has been proven to be an efficient, affordable, safe, and consistent analytical technique. As a result, 

we consider that the fundamental purpose of this research is to put into words the current status of 

soil spectroscopy along with its future application for soil monitoring. The limits of soil 

spectroscopy as a substitute for conventional laboratory testing are explored, as are the restraints. 

The study also underlines the importance of developing a standard for collecting laboratory soil 

spectra, as well as exchanging spectral collections and digitizing existing soil archives, in order to 

eliminate the requirement for pricey sample campaigns. subsequently, frequent soil analysis 

employing soil spectroscopy would benefit people using it by minimizing analytical costs and 

boosting laboratory results comparability. 

This thesis thoroughly investigates various soil spectroscopy techniques to improve understanding 

and application in soil analysis. The first step involved meticulous preprocessing that included 

noise removal using Savitzky-Golay, first derivative and scatter correction through MSC and SNV 

methods. These steps of data preparation are important because they ensure quality control and 

subsequent data analysis. Following this, calibration sampling was addressed with attention to 

details. The sample size determination was done by Kennard-Stone sampling (KSS) method 

whereas sample robustness and selection visualization ensured reliable calibration samples. 

Lastly, chemometric analysis using Partial Least Squares Regression (PLSR) was performed 

towards developing predictive models for the target soil properties. The optimal number of latent 

variables in each model was determined by analyzing the relationship between Root Mean Square 

Error of Prediction (RMSEP) and number of components. Model generalizability as well as its 

performance during cross-validation were evaluated. Furthermore, loading plots identified the 

spectral wavelengths which provided most informative contributions to prediction of each soil 

property. 
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This thesis’s main point is how crucial systematic preprocessing, careful sampling and insightful 

chemometric analysis are in advancing soil spectroscopy as a strong tool for the analysis and 

management of soil properties. This work's overall conclusion is that there could be limitless 

opportunities for practical soil science with the widespread application of VIS-NIR reflectance 

spectroscopy. However, the requirement for its success is developing such a spectral library that 

represents a pedological diversity. The development and continuous improvement of a database of 

this sort would improve the efficiency of predicting soil characteristics and make the process of 

classifying soil more data-driven and attainable, considering that it is based on standard 

measurements. 
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